This YANG module defines a model for network and VPN service performance monitoring (PM). Copyright (c) 2023 IETF Trust and the...
Version: 2023-03-20
module ietf-network-vpn-pm { yang-version 1.1; namespace "urn:ietf:params:xml:ns:yang:ietf-network-vpn-pm"; prefix nvp; import ietf-yang-types { prefix yang; reference "RFC 6991: Common YANG Data Types"; } import ietf-vpn-common { prefix vpn-common; reference "RFC 9181: A Common YANG Data Model for Layer 2 and Layer 3 VPNs"; } import ietf-network { prefix nw; reference "RFC 8345: A YANG Data Model for Network Topologies, Section 6.1"; } import ietf-network-topology { prefix nt; reference "RFC 8345: A YANG Data Model for Network Topologies, Section 6.2"; } import ietf-lime-time-types { prefix lime; reference "RFC 8532: Generic YANG Data Model for the Management of Operations, Administration, and Maintenance (OAM) Protocols That Use Connectionless Communications"; } organization "IETF OPSAWG (Operations and Management Area Working Group)"; contact "WG Web: <https://datatracker.ietf.org/wg/opsawg/> WG List: <mailto:opsawg@ietf.org> Editor: Bo Wu <lana.wubo@huawei.com> Editor: Mohamed Boucadair <mohamed.boucadair@orange.com> Editor: Qin Wu <bill.wu@huawei.com> Author: Oscar Gonzalez de Dios <oscar.gonzalezdedios@telefonica.com> Author: Bin Wen <bin_wen@comcast.com>"; description "This YANG module defines a model for network and VPN service performance monitoring (PM). Copyright (c) 2023 IETF Trust and the persons identified as authors of the code. All rights reserved. Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Revised BSD License set forth in Section 4.c of the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info). This version of this YANG module is part of RFC 9375 (https://www.rfc-editor.org/info/rfc9375); see the RFC itself for full legal notices."; revision "2023-03-20" { description "Initial revision."; reference "RFC 9375: A YANG Data Model for Network and VPN Service Performance Monitoring"; } identity node-type { description "Base identity for node type"; } identity pe { base node-type; description "Provider Edge (PE) node type. A PE is the device or set of devices at the edge of the provider network with the functionality that is needed to interface with the customer."; } identity p { base node-type; description "Provider router node type. That is, a router in the core network that does not have interfaces directly toward a customer."; } identity asbr { base node-type; description "Autonomous System Border Router (ASBR) node type."; reference "RFC 4364: BGP/MPLS IP Virtual Private Networks (VPNs)"; } identity pm-source-type { description "Base identity from which specific performance monitoring mechanism types are derived."; } identity pm-source-bgpls { base pm-source-type; description "Indicates BGP-LS as the performance monitoring metric source."; reference "RFC 8571: BGP - Link State (BGP-LS) Advertisement of IGP Traffic Engineering Performance Metric Extensions"; } identity pm-source-owamp { base pm-source-type; description "Indicates the One-Way Active Measurement Protocol (OWAMP) as the performance monitoring metric source."; reference "RFC 4656: A One-way Active Measurement Protocol (OWAMP)"; } identity pm-source-twamp { base pm-source-type; description "Indicates the Two-Way Active Measurement Protocol (TWAMP) as the performance monitoring metric source."; reference "RFC 5357: A Two-Way Active Measurement Protocol (TWAMP)"; } identity pm-source-stamp { base pm-source-type; description "Indicates the Simple Two-way Active Measurement Protocol (STAMP) as the performance monitoring metric source."; reference "RFC 8762: Simple Two-Way Active Measurement Protocol"; } identity pm-source-y-1731 { base pm-source-type; description "Indicates Ethernet OAM Y.1731 as the performance monitoring metric source."; reference "ITU-T Y.1731: Operations, administration and maintenance (OAM) functions and mechanisms for Ethernet-based networks"; } identity pm-source-ioam { base pm-source-type; description "Indicates In Situ Operations, Administration, and Maintenance (IOAM) as the performance monitoring metric source."; reference "RFC 9197: Data Fields for In Situ Operations, Administration, and Maintenance (IOAM)"; } identity pm-type { description "Base identity for the PM type."; } identity pm-type-network-link { base pm-type; description "Indicates that the PM type is for the link in the network topology."; } identity pm-type-vpn-inter-access { base pm-type; description "Indicates that the PM type is for logical point-to-point VPN connections between source and destination VPN access interfaces."; } identity pm-type-vpn-tunnel { base pm-type; description "Indicates that the PM type is for VPN tunnels."; } typedef percentage { type decimal64 { fraction-digits 5; range "0..100"; } description "Percentage to 5 decimal places."; } typedef percentile { type decimal64 { fraction-digits 3; range "0..100"; } description "The percentile is a value between 0 and 100 to 3 decimal places, e.g., 10.000, 99.900, and 99.990. For example, for a given one-way delay measurement, if the percentile is set to 95.000 and the 95th percentile one-way delay is 2 milliseconds, then the 95 percent of the sample value is less than or equal to 2 milliseconds."; } grouping entry-summary { description "Entry summary grouping used for network topology augmentation."; container entry-summary { config false; description "Container for VPN or network entry summary."; container ipv4-num { description "IPv4-specific parameters."; leaf maximum-routes { type uint32; description "Indicates the maximum number of IPv4 routes for the VPN or network."; } leaf total-active-routes { type uint32; description "Indicates total active IPv4 routes for the VPN or network."; } } // container ipv4-num container ipv6-num { description "IPv6-specific parameters."; leaf maximum-routes { type uint32; description "Indicates the maximum number of IPv6 routes for the VPN or network."; } leaf total-active-routes { type uint32; description "Indicates total active IPv6 routes for the VPN or network."; } } // container ipv6-num container mac-num { description "MAC statistics."; leaf maximum-mac-entries { type uint32; description "Indicates the maximum number of MAC entries for the VPN or network."; } leaf total-active-mac-entries { type uint32; description "Indicates the total active MAC entries for the VPN or network."; } } // container mac-num } // container entry-summary } // grouping entry-summary grouping link-loss-statistics { description "Grouping for per-link error statistics."; container loss-statistics { description "One-way link loss summarized information."; reference "RFC 4656: A One-way Active Measurement Protocol (OWAMP) ITU-T Y.1731: Operations, administration and maintenance (OAM) functions and mechanisms for Ethernet-based networks"; leaf packet-loss-count { type yang:counter64; description "Total number of lost packets."; } leaf loss-ratio { type percentage; description "Loss ratio of the packets. Expressed as percentage of packets lost with respect to packets sent."; } } // container loss-statistics } // grouping link-loss-statistics grouping link-delay-statistics { description "Grouping for per-link delay statistics."; container delay-statistics { description "One-way link delay summarized information."; reference "RFC 4656: A One-way Active Measurement Protocol (OWAMP) ITU-T Y.1731: Operations, administration and maintenance (OAM) functions and mechanisms for Ethernet-based networks"; leaf unit-value { type identityref { base lime:time-unit-type; } default "lime:milliseconds"; description "Time units, where the options are hours, minutes, seconds, milliseconds, microseconds, and nanoseconds."; } leaf min-delay-value { type yang:gauge64; description "Minimum observed one-way delay."; } leaf max-delay-value { type yang:gauge64; description "Maximum observed one-way delay."; } leaf low-delay-percentile { type yang:gauge64; description "Low percentile of observed one-way delay with specific measurement method."; } leaf intermediate-delay-percentile { type yang:gauge64; description "Intermediate percentile of observed one-way delay with specific measurement method."; } leaf high-delay-percentile { type yang:gauge64; description "High percentile of observed one-way delay with specific measurement method."; } } // container delay-statistics } // grouping link-delay-statistics grouping link-jitter-statistics { description "Grouping for per-link jitter statistics."; container jitter-statistics { description "One-way link jitter summarized information."; reference "RFC 3393: IP Packet Delay Variation Metric for IP Performance Metrics (IPPM) RFC 4656: A One-way Active Measurement Protocol (OWAMP) ITU-T Y.1731: Operations, administration and maintenance (OAM) functions and mechanisms for Ethernet-based networks"; leaf unit-value { type identityref { base lime:time-unit-type; } default "lime:milliseconds"; description "Time units, where the options are hours, minutes, seconds, milliseconds, microseconds, and nanoseconds."; } leaf min-jitter-value { type yang:gauge64; description "Minimum observed one-way jitter."; } leaf max-jitter-value { type yang:gauge64; description "Maximum observed one-way jitter."; } leaf low-jitter-percentile { type yang:gauge64; description "Low percentile of observed one-way jitter."; } leaf intermediate-jitter-percentile { type yang:gauge64; description "Intermediate percentile of observed one-way jitter."; } leaf high-jitter-percentile { type yang:gauge64; description "High percentile of observed one-way jitter."; } } // container jitter-statistics } // grouping link-jitter-statistics grouping tp-svc-telemetry { description "Grouping for interface service telemetry."; leaf last-updated { type yang:date-and-time; config false; description "Indicates the date and time when the counters were last updated."; } leaf inbound-octets { type yang:counter64; description "The total number of octets received on the interface, including framing characters."; } leaf inbound-unicast { type yang:counter64; description "The total number of inbound unicast packets."; } leaf inbound-broadcast { type yang:counter64; description "The total number of inbound broadcast packets."; } leaf inbound-multicast { type yang:counter64; description "The total number of inbound multicast packets."; } leaf inbound-discards { type yang:counter64; description "The number of inbound packets that were discarded even though no errors had been detected. Possible reasons for discarding such a packet could be to free up buffer space, not enough buffer for too much data, etc."; } leaf inbound-errors { type yang:counter64; description "The number of inbound packets that contained errors."; } leaf inbound-unknown-protocol { type yang:counter64; description "The number of packets received via the interface that were discarded because of an unknown or unsupported protocol."; } leaf outbound-octets { type yang:counter64; description "The total number of octets transmitted out of the interface, including framing characters."; } leaf outbound-unicast { type yang:counter64; description "The total number of outbound unicast packets."; } leaf outbound-broadcast { type yang:counter64; description "The total number of outbound broadcast packets."; } leaf outbound-multicast { type yang:counter64; description "The total number of outbound multicast packets."; } leaf outbound-discards { type yang:counter64; description "The number of outbound packets that were discarded even though no errors had been detected to prevent their transmission. Possible reasons for discarding such a packet could be to free up buffer space, not enough buffer for too much data, etc."; } leaf outbound-errors { type yang:counter64; description "The number of outbound packets that contained errors."; } } // grouping tp-svc-telemetry augment /nw:networks/nw:network/nw:network-types { description "Defines the service topologies types."; container service { presence "Presence of the container indicates performance monitoring of the VPN service, and absence of the container indicates performance monitoring of the network itself."; description "Container for VPN service."; leaf service-type { type identityref { base vpn-common:service-type; } mandatory true; description "This indicates the network service type, e.g., L3VPN and VPLS."; } leaf vpn-id { type vpn-common:vpn-id; description "VPN identifier."; } leaf vpn-service-topology { type identityref { base vpn-common:vpn-topology; } description "VPN service topology, e.g., hub-spoke, any-to-any, and hub-spoke-disjoint."; } } // container service } augment /nw:networks/nw:network/nw:node { description "Augments the network node with other general attributes."; leaf node-type { type identityref { base node-type; } description "Node type, e.g., PE, P, and ASBR."; } uses entry-summary; } augment /nw:networks/nw:network/nw:node { when '../nw:network-types/nvp:service' { description "Augments for VPN service PM."; } description "Augments the network node with VPN service attributes."; leaf role { type identityref { base vpn-common:role; } default "vpn-common:any-to-any-role"; description "Role of the node in the VPN service topology."; } } augment /nw:networks/nw:network/nt:link { description "Augments the network topology link with performance monitoring attributes."; container perf-mon { description "Container for PM attributes."; leaf low-percentile { type percentile; default "10.000"; description "Low percentile to report. Setting low-percentile to 0.000 indicates the client is not interested in receiving low percentile."; } leaf intermediate-percentile { type percentile; default "50.000"; description "Intermediate percentile to report. Setting intermediate-percentile to 0.000 indicates the client is not interested in receiving intermediate percentile."; } leaf high-percentile { type percentile; default "95.000"; description "High percentile to report. Setting high-percentile to 0.000 indicates the client is not interested in receiving high percentile."; } leaf measurement-interval { type uint32 { range "1..max"; } units "seconds"; default "60"; description "Indicates the time interval to perform PM measurement over."; } list pm { key "pm-type"; config false; description "The list of PM based on PM type."; leaf pm-type { type identityref { base pm-type; } config false; description "The PM type of the measured PM attributes."; } container pm-attributes { description "Container for PM attributes."; leaf start-time { type yang:date-and-time; config false; description "The date and time the measurement last started."; } leaf end-time { type yang:date-and-time; config false; description "The date and time the measurement last ended."; } leaf pm-source { type identityref { base pm-source-type; } config false; description "The OAM tool used to collect the PM data."; } container one-way-pm-statistics { config false; description "Container for link telemetry attributes."; uses link-loss-statistics; uses link-delay-statistics; uses link-jitter-statistics; } // container one-way-pm-statistics list one-way-pm-statistics-per-class { key "class-id"; config false; description "The list of PM data based on class of service."; leaf class-id { type string; description "The class-id is used to identify the class of service. This identifier is internal to the administration."; } uses link-loss-statistics; uses link-delay-statistics; uses link-jitter-statistics; } // list one-way-pm-statistics-per-class } // container pm-attributes } // list pm } // container perf-mon } augment /nw:networks/nw:network/nt:link/perf-mon { when '../../nw:network-types/nvp:service' { description "Augments for VPN service PM."; } description "Augments the network topology link with VPN service performance monitoring attributes."; container vpn-pm-type { description "The VPN PM type of this logical point-to-point unidirectional VPN link."; container inter-vpn-access-interface { description "Indicates inter-vpn-access-interface PM, which is used to monitor the performance of logical point-to-point VPN connections between source and destination VPN access interfaces."; leaf inter-vpn-access-interface { type empty; description "This is a placeholder for inter-vpn-access-interface PM, which is not bound to a specific VPN access interface. The source or destination VPN access interface of the measurement can be augmented as needed."; } } // container inter-vpn-access-interface container vpn-tunnel { presence "Enables VPN tunnel PM"; description "Indicates VPN tunnel PM, which is used to monitor the performance of VPN tunnels."; leaf vpn-tunnel-type { type identityref { base vpn-common:protocol-type; } config false; description "The leaf indicates the VPN tunnel type, e.g., Generic Routing Encapsulation (GRE) and Generic Network Virtualization Encapsulation (Geneve)."; } } // container vpn-tunnel } // container vpn-pm-type } augment /nw:networks/nw:network/nw:node/nt:termination-point { description "Augments the network topology termination point with performance monitoring attributes."; container pm-statistics { config false; description "Container for termination point PM attributes."; uses tp-svc-telemetry; } // container pm-statistics } augment /nw:networks/nw:network/nw:node/nt:termination-point/pm-statistics { when '../../../nw:network-types/nvp:service' { description "Augments for VPN service PM."; } description "Augments the network topology termination-point with VPN service performance monitoring attributes."; list vpn-network-access { key "network-access-id"; description "The list of PM based on VPN network accesses."; leaf network-access-id { type vpn-common:vpn-id; description "The reference to an identifier for the VPN network access."; } uses tp-svc-telemetry; } // list vpn-network-access } } // module ietf-network-vpn-pm
© 2023 YumaWorks, Inc. All rights reserved.