This YANG module specifies a vendor-independent data model for the Two-Way Active Measurement Protocol (TWAMP). The data model ...
Version: 2021-11-17
module ietf-twamp { yang-version 1.1; namespace "urn:ietf:params:xml:ns:yang:ietf-twamp"; prefix ietf-twamp; import ietf-inet-types { prefix inet; reference "RFC 6991: Common YANG Data Types"; } organization "IETF IPPM (IP Performance Metrics) Working Group"; contact "WG Web: <https://datatracker.ietf.org/wg/ippm/documents/> WG List: <mailto:ippm@ietf.org> Editor: Ruth Civil <mailto:ruthcivil@gmail.com> Editor: Al Morton <mailto:acmorton@att.com> Editor: Reshad Rahman <mailto:reshad@yahoo.com> Editor: Mahesh Jethanandani <mailto:mjethanandani@gmail.com> Editor: Kostas Pentikousis <mailto:kostas.pentikousis@detecon.com>"; description "This YANG module specifies a vendor-independent data model for the Two-Way Active Measurement Protocol (TWAMP). The data model defines four TWAMP logical entities, namely Control-Client, Server, Session-Sender, and Session-Reflector, as illustrated in the annotated TWAMP logical model (Figure 1 of RFC 8913). This YANG module uses features to indicate which of the four logical entities are supported by a TWAMP implementation. The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this document are to be interpreted as described in BCP 14 (RFC 2119) (RFC 8174) when, and only when, they appear in all capitals, as shown here. Copyright (c) 2021 IETF Trust and the persons identified as authors of the code. All rights reserved. Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Simplified BSD License set forth in Section 4.c of the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info). This version of this YANG module is part of RFC 8913; see the RFC itself for full legal notices."; revision "2021-11-17" { description "Initial revision. References RFC 5357, RFC 5618, RFC 5938, RFC 6038, RFC 7717, and RFC 8911."; reference "RFC 8913: Two-Way Active Measurement Protocol (TWAMP) YANG Data Model"; } typedef twamp-modes { type bits { bit unauthenticated { position 0; description "Unauthenticated mode, in which no encryption or authentication is applied in TWAMP-Control and TWAMP-Test. KeyID, Token, and Client-IV are not used in the Set-Up-Response message. See Section 3.1 of RFC 4656."; reference "RFC 4656: A One-way Active Measurement Protocol (OWAMP), Section 3.1"; } bit authenticated { position 1; description "Authenticated mode, in which the Control-Client and Server possess a shared secret, thus prohibiting 'theft of service'. As per Section 6 of RFC 4656, in 'authenticated mode, the timestamp is in the clear and is not protected cryptographically in any way, while the rest of the message has the same protection as in encrypted mode. This mode allows one to trade off cryptographic protection against accuracy of timestamps.'"; reference "RFC 4656: A One-way Active Measurement Protocol (OWAMP), Section 6"; } bit encrypted { position 2; description "Encrypted mode 'makes it impossible to alter timestamps undetectably' (Section 1 of RFC 4656). See also Section 4 of RFC 7717."; reference "RFC 4656: A One-way Active Measurement Protocol (OWAMP), Section 6 RFC 7717: IKEv2-Derived Shared Secret Key for the One-Way Active Measurement Protocol (OWAMP) and Two-Way Active Measurement Protocol (TWAMP), Section 4"; } bit unauth-test-encrypt-control { position 3; description "When using the mixed security mode, the TWAMP-Test protocol operates in unauthenticated mode and the TWAMP-Control protocol operates in encrypted mode."; reference "RFC 5618: Mixed Security Mode for the Two-Way Active Measurement Protocol (TWAMP)"; } bit individual-session-control { position 4; description "This mode enables individual test sessions using Session Identifiers."; reference "RFC 5938: Individual Session Control Feature for the Two-Way Active Measurement Protocol (TWAMP)"; } bit reflect-octets { position 5; description "This mode indicates the reflect octets capability."; reference "RFC 6038: Two-Way Active Measurement Protocol (TWAMP) Reflect Octets and Symmetrical Size Features"; } bit symmetrical-size { position 6; description "This mode indicates support for the symmetrical size sender test packet format."; reference "RFC 6038: Two-Way Active Measurement Protocol (TWAMP) Reflect Octets and Symmetrical Size Features"; } bit IKEv2Derived { position 7; description "In this mode, the shared key is derived from an Internet Key Exchange Protocol Version 2 (IKEv2) security association (SA)."; reference "RFC 7717: IKEv2-Derived Shared Secret Key for the One-Way Active Measurement Protocol (OWAMP) and Two-Way Active Measurement Protocol (TWAMP)"; } } description "Specifies the configurable TWAMP-Modes supported during a TWAMP-Control connection setup between a Control-Client and a Server. Section 7 of RFC 7717 summarizes the 'TWAMP-Modes' Registry and points to their formal specification."; } typedef control-client-connection-state { type enumeration { enum "active" { value 0; description "Indicates an active TWAMP-Control connection to the Server."; } enum "idle" { value 1; description "Indicates an idle TWAMP-Control connection to the Server."; } } description "Indicates the Control-Client TWAMP-Control connection state."; } typedef test-session-state { type enumeration { enum "accepted" { value 0; description "Indicates an accepted TWAMP-Test session request."; } enum "failed" { value 1; description "Indicates a TWAMP-Test session failure due to some unspecified reason (catch-all)."; } enum "internal-error" { value 2; description "Indicates a TWAMP-Test session failure due to an internal error."; } enum "not-supported" { value 3; description "Indicates a TWAMP-Test session failure because some aspect of the TWAMP-Test session request is not supported."; } enum "permanent-resource-limit" { value 4; description "Indicates a TWAMP-Test session failure due to permanent resource limitations."; } enum "temp-resource-limit" { value 5; description "Indicates a TWAMP-Test session failure due to temporary resource limitations."; } } description "Indicates the Control-Client TWAMP-Test session state."; } typedef server-ctrl-connection-state { type enumeration { enum "active" { value 0; description "Indicates an active TWAMP-Control connection to the Control-Client."; } enum "servwait" { value 1; description "Indicates that the TWAMP-Control connection to the Control-Client is in SERVWAIT as per the definition in Section 3.1 of RFC 5357."; reference "RFC 5357: A Two-Way Active Measurement Protocol (TWAMP), Section 3.1"; } } description "Indicates the Server TWAMP-Control connection state."; } typedef sender-session-state { type enumeration { enum "active" { value 0; description "Indicates that the TWAMP-Test session is active."; } enum "failure" { value 1; description "Indicates that the TWAMP-Test session has failed."; } } description "Indicates the Session-Sender TWAMP-Test session state."; } typedef padding-fill-mode { type enumeration { enum "zero" { value 0; description "TWAMP-Test packets are padded with all zeros."; } enum "random" { value 1; description "TWAMP-Test packets are padded with pseudorandom numbers."; } } description "Indicates what type of packet padding is used in the TWAMP-Test packets."; } typedef dynamic-port-number { type inet:port-number { range "49152..65535"; } description "Dynamic range for port numbers."; } feature control-client { description "Indicates that the device supports configuration of the TWAMP Control-Client logical entity."; } feature server { description "Indicates that the device supports configuration of the TWAMP Server logical entity."; } feature session-sender { description "Indicates that the device supports configuration of the TWAMP Session-Sender logical entity."; } feature session-reflector { description "Indicates that the device supports configuration of the TWAMP Session-Reflector logical entity."; } grouping key-management { description "Used by the Control-Client and Server for TWAMP-Control key management."; list key-chain { key "key-id"; description "Relates KeyIDs with their respective secret keys in a TWAMP-Control connection."; leaf key-id { type string { length "1..80"; } description "KeyID used for a TWAMP-Control connection. As per Section 3.1 of RFC 4656, KeyID is 'a UTF-8 string, up to 80 octets in length' and is used to select which 'shared secret the client' (Control-Client) 'wishes to use to authenticate or encrypt'."; } leaf secret-key { type binary; description "The secret key corresponding to the KeyID for this TWAMP-Control connection."; } } // list key-chain } // grouping key-management grouping maintenance-statistics { description "Used for TWAMP-Test maintenance statistics."; leaf sent-packets { type uint32; config false; description "Indicates the number of packets sent."; } leaf rcv-packets { type uint32; config false; description "Indicates the number of packets received."; } leaf last-sent-seq { type uint32; config false; description "Indicates the last sent sequence number."; } leaf last-rcv-seq { type uint32; config false; description "Indicates the last received sequence number."; } } // grouping maintenance-statistics grouping count { description "Reusable data structure for count, which is used in both the Server and the Control-Client."; leaf count { type uint8 { range "10..31"; } default "15"; description "Parameter communicated to the Control-Client as part of the Server Greeting message and used for deriving a key from a shared secret as per Section 3.1 of RFC 4656: MUST be a power of 2 and at least 1024. It is configured by providing said power. For example, configuring 20 here means count 2^20 = 1048576. The default is 15, meaning 2^15 = 32768."; } } // grouping count grouping max-count-exponent { description "Reusable data structure for max-count that is used in both the client (Control-Client) container and the server container."; leaf max-count-exponent { type uint8 { range "10..31"; } default "20"; description "This parameter limits the maximum Count value, which MUST be a power of 2 and at least 1024 as per RFC 5357. It is configured by providing said power. For example, configuring 10 here means max count 2^10 = 1024. The default is 20, meaning 2^20 = 1048576. A TWAMP Server uses this configured value in the Server Greeting message sent to the Control-Client. A TWAMP Control-Client uses this configured value to prevent denial-of-service (DoS) attacks by closing the control connection to the Server if it 'receives a Server-Greeting message with Count greater that [sic] its maximum configured value', as per Section 6 of RFC 5357. Further, note that according to Section 6 of RFC 5357: 'If an attacking system set the maximum value in Count (2**32), then the system under attack would stall for a significant period of time while it attempts to generate keys. Therefore, TWAMP-compliant systems SHOULD have a configuration control to limit the maximum Count value. The default maximum Count value SHOULD be 32768.' In the case of this document, the default max-count-exponent value SHOULD be 15, which corresponds to a maximum value of 2**15 or 32768. RFC 5357 does not qualify 'significant period' in terms of time, but it is clear that this depends on the processing capacity available, and operators need to pay attention to this security consideration."; } } // grouping max-count-exponent container twamp { description "TWAMP logical entity configuration grouping of four models that correspond to the four TWAMP logical entities Control-Client, Server, Session-Sender, and Session-Reflector as illustrated in Figure 1 of RFC 8913."; container client { if-feature control-client; description "Configuration of the TWAMP Control-Client logical entity."; leaf admin-state { type boolean; default "true"; description "Indicates whether the device is allowed to operate as a TWAMP Control-Client."; } list mode-preference-chain { key "priority"; unique "mode"; description "Indicates the Control-Client preferred order of use of the supported TWAMP-Modes. Depending on the modes available in the TWAMP Server Greeting message (see Figure 2 of RFC 7717), the Control-Client MUST choose the highest-priority mode from the configured mode-preference-chain list."; leaf priority { type uint16; description "Indicates the Control-Client mode preference priority, expressed as a 16-bit unsigned integer. Values for the priority start with zero, the highest priority, and decreasing priority value is indicated by every increase in value by one."; } leaf mode { type twamp-modes; description "The supported TWAMP-Modes matching the corresponding priority."; } } // list mode-preference-chain uses key-management; list ctrl-connection { key "name"; description "List of TWAMP Control-Client control connections. Each item in the list describes a control connection that will be initiated by this Control-Client."; leaf name { type string; description "A unique name used as a key to identify this individual TWAMP-Control connection on the Control-Client device."; } leaf client-ip { type inet:ip-address; description "The IP address of the local Control-Client device, to be placed in the source IP address field of the IP header in TWAMP-Control (TCP) packets belonging to this control connection. If not configured, the device SHALL choose its own source IP address."; } leaf server-ip { type inet:ip-address; mandatory true; description "The IP address of the remote Server device to which the TWAMP-Control connection will be initiated."; } leaf server-tcp-port { type inet:port-number; default "862"; description "This parameter defines the TCP port number that is to be used by this outgoing TWAMP-Control connection. Typically, this is the well-known TWAMP-Control port number (862) as per RFC 5357. However, there are known realizations of TWAMP in the field that were implemented before this well-known port number was allocated. These early implementations allowed the port number to be configured. This parameter is therefore provided for backward-compatibility reasons."; } leaf control-packet-dscp { type inet:dscp; default "0"; description "The Differentiated Services Code Point (DSCP) value to be placed in the IP header of TWAMP-Control (TCP) packets generated by this Control-Client."; } leaf key-id { type string { length "1..80"; } description "Indicates the KeyID value selected for this TWAMP-Control connection."; } uses max-count-exponent; leaf client-tcp-port { type inet:port-number; config false; description "Indicates the source TCP port number used in the TWAMP-Control packets belonging to this control connection."; } leaf server-start-time { type uint64; config false; description "Indicates the Start-Time advertised by the Server in the Server-Start message (RFC 4656, Section 3.1), representing the time when the current instantiation of the Server started operating. The timestamp format follows RFC 5905, according to Section 4.1.2 of RFC 4656."; reference "RFC 4656: A One-way Active Measurement Protocol (OWAMP), Sections 3.1 and 4.1.2 RFC 5905: Network Time Protocol Version 4: Protocol and Algorithms Specification"; } leaf repeat-count { type uint64; config false; description "Indicates how many times the test session has been repeated. When a test is running, this value will be greater than 0. If the repeat parameter is non-zero, this value is smaller than or equal to the repeat parameter."; } leaf state { type control-client-connection-state; config false; description "Indicates the current TWAMP-Control connection state."; } leaf selected-mode { type twamp-modes; config false; description "The TWAMP-Modes that the Control-Client has chosen for this control connection as set in the Mode field of the Set-Up-Response message."; reference "RFC 4656: A One-way Active Measurement Protocol (OWAMP), Section 3.1"; } leaf token { type binary { length "64"; } config false; description "This parameter holds the 64 octets containing the concatenation of a 16-octet Challenge, a 16-octet AES Session-key used for encryption, and a 32-octet HMAC-SHA1 Session-key used for authentication; see also the last paragraph of Section 6.10 of RFC 4656. If the mode defined in RFC 7717 is selected (selected-mode), Token is limited to 16 octets."; reference "RFC 4656: A One-way Active Measurement Protocol (OWAMP), Section 6.10 RFC 7717: IKEv2-Derived Shared Secret Key for the One-Way Active Measurement Protocol (OWAMP) and Two-Way Active Measurement Protocol (TWAMP)"; } leaf client-iv { type binary { length "16"; } config false; description "Indicates the Control-Client Initialization Vector (Client-IV), which is generated randomly by the Control-Client. As per RFC 4656: 'Client-IV merely needs to be unique (i.e., it MUST never be repeated for different sessions using the same secret key; a simple way to achieve that without the use of cumbersome state is to generate the Client-IV values using a cryptographically secure pseudo-random number source.' If the mode defined in RFC 7717 is selected (selected-mode), Client-IV is limited to 12 octets."; reference "RFC 4656: A One-way Active Measurement Protocol (OWAMP) RFC 7717: IKEv2-Derived Shared Secret Key for the One-Way Active Measurement Protocol (OWAMP) and Two-Way Active Measurement Protocol (TWAMP)"; } list test-session-request { key "name"; description "Information associated with the Control-Client for this test session."; leaf name { type string; description "A unique name to be used for identification of this TWAMP-Test session on the Control-Client."; } leaf sender-ip { type inet:ip-address; description "The IP address of the Session-Sender device, which is to be placed in the source IP address field of the IP header in TWAMP-Test (UDP) packets belonging to this test session. This value will be used to populate the Sender Address field of the Request-TW-Session message. If not configured, the device SHALL choose its own source IP address."; } leaf sender-udp-port { type union { type dynamic-port-number; type enumeration { enum "autoallocate" { value 0; description "Indicates that the Control-Client will auto-allocate the TWAMP-Test (UDP) port number from the dynamic port range."; } } } default "autoallocate"; description "The UDP port number that is to be used by the Session-Sender for this TWAMP-Test session. The number is restricted to the dynamic port range. By default, the Control-Client SHALL auto-allocate a UDP port number for this TWAMP-Test session. The configured (or auto-allocated) value is advertised in the Sender Port field of the Request-TW-Session message (see Section 3.5 of RFC 5357). Note that in the scenario where a device auto-allocates a UDP port number for a session and the repeat parameter for that session indicates that it should be repeated, the device is free to auto-allocate a different UDP port number when it negotiates the next (repeated) iteration of this session."; } leaf reflector-ip { type inet:ip-address; mandatory true; description "The IP address belonging to the remote Session-Reflector device to which the TWAMP-Test session will be initiated. This value will be used to populate the Receiver Address field of the Request-TW-Session message."; } leaf reflector-udp-port { type inet:port-number { range "862 | 49152..65535"; } description "This parameter defines the UDP port number that will be used by the Session-Reflector for this TWAMP-Test session. The default number is within the dynamic port range and is to be placed in the Receiver Port field of the Request-TW-Session message. The well-known port (862) MAY be used."; reference "RFC 8545: Well-Known Port Assignments for the One-Way Active Measurement Protocol (OWAMP) and the Two-Way Active Measurement Protocol (TWAMP)"; } leaf timeout { type uint64; units "seconds"; default "2"; description "The length of time (in seconds) that the Session-Reflector should continue to respond to packets belonging to this TWAMP-Test session after a Stop-Sessions TWAMP-Control message has been received. This value will be placed in the Timeout field of the Request-TW-Session message."; reference "RFC 5357: A Two-Way Active Measurement Protocol (TWAMP), Section 3.5"; } leaf padding-length { type uint32 { range "64..4096"; } description "The number of padding bytes to be added to the TWAMP-Test (UDP) packets generated by the Session-Sender. This value will be placed in the Padding Length field of the Request-TW-Session message."; reference "RFC 4656: A One-way Active Measurement Protocol (OWAMP), Section 3.5"; } leaf test-packet-dscp { type inet:dscp; default "0"; description "The DSCP value to be placed in the IP header of TWAMP-Test packets generated by the Session-Sender and in the UDP header of the TWAMP-Test response packets generated by the Session-Reflector for this test session. This value will be placed in the Type-P Descriptor field of the Request-TW-Session message."; reference "RFC 5357: A Two-Way Active Measurement Protocol (TWAMP)"; } leaf start-time { type uint64; default "0"; description "Time when the session is to be started (but not before the TWAMP Start-Sessions command is issued; see Section 3.4 of RFC 5357). The start-time value is placed in the Start Time field of the Request-TW-Session message. The timestamp format follows RFC 5905 as per Section 3.5 of RFC 4656. The default value of 0 indicates that the session will be started as soon as the Start-Sessions message is received."; } leaf repeat { type uint32 { range "0..4294967295"; } default "0"; description "This value determines if the TWAMP-Test session must be repeated. When a test session has completed, the repeat parameter is checked. The default value of 0 indicates that the session MUST NOT be repeated. If the repeat value is 1 through 4,294,967,294, then the test session SHALL be repeated using the information in the repeat-interval parameter, and the parent TWAMP-Control connection for this test session is restarted to negotiate a new instance of this TWAMP-Test session. A value of 4,294,967,295 indicates that the test session SHALL be repeated *forever* using the information in the repeat-interval parameter and SHALL NOT decrement the value."; } leaf repeat-interval { when "../repeat!='0'" { description "This parameter determines the timing of repeated TWAMP-Test sessions when repeat is more than 0. When the value of repeat-interval is 0, the negotiation of a new test session SHALL begin immediately after the previous test session completes. Otherwise, the Control-Client will wait for the number of seconds specified in the repeat-interval parameter before negotiating the new instance of this TWAMP-Test session."; } type uint32; units "seconds"; default "0"; description "Repeat interval (in seconds)."; } list pm-reg-list { key "pm-index"; description "A list of one or more Performance Metrics Registry Index values, which communicate packet stream characteristics along with one or more metrics to be measured. All members of the pm-reg-list MUST have the same stream characteristics, such that they combine to specify all metrics that shall be measured on a single stream."; reference "RFC 8911: Registry for Performance Metrics"; leaf pm-index { type uint16; description "Numerical index value of a Registered Metric in the Performance Metrics Registry (see RFC 8911). Output statistics are specified in the corresponding Registry Entry."; } } // list pm-reg-list leaf state { type test-session-state; config false; description "Indicates the TWAMP-Test session state -- an accepted request or an indication of an error."; reference "RFC 5357: A Two-Way Active Measurement Protocol (TWAMP), Section 3.5"; } leaf sid { type string; config false; description "The Session Identifier (SID) allocated by the Server for this TWAMP-Test session and communicated back to the Control-Client in the SID field of the Accept-Session message."; reference "RFC 6038: Two-Way Active Measurement Protocol (TWAMP) Reflect Octets and Symmetrical Size Features, Section 4.3"; } } // list test-session-request } // list ctrl-connection } // container client container server { if-feature server; description "Configuration of the TWAMP Server logical entity."; leaf admin-state { type boolean; default "true"; description "Indicates whether the device is allowed to operate as a TWAMP Server."; } leaf server-tcp-port { type inet:port-number; default "862"; description "This parameter defines the well-known TCP port number that is used by TWAMP-Control. The Server will listen on this port number for incoming TWAMP-Control connections. Although this is defined as a fixed value (862) in RFC 5357, there are several realizations of TWAMP in the field that were implemented before this well-known port number was allocated. These early implementations allowed the port number to be configured. This parameter is therefore provided for backward-compatibility reasons."; } leaf servwait { type uint32 { range "1..604800"; } units "seconds"; default "900"; description "TWAMP-Control (TCP) session timeout, in seconds. According to Section 3.1 of RFC 5357: 'The Server MAY discontinue any established control connection when no packet associated with that connection has been received within SERVWAIT seconds.'"; } leaf control-packet-dscp { type inet:dscp; description "The DSCP value to be placed in the IP header of TWAMP-Control (TCP) packets generated by the Server. Section 3.1 of RFC 5357 specifies that the Server SHOULD use the DSCP value from the Control-Client's TCP SYN. However, for practical purposes, TWAMP will typically be implemented using a general-purpose TCP stack provided by the underlying operating system, and such a stack may not provide this information to the user. Consequently, it is not always possible to implement the behavior described in RFC 5357 in an OS-portable version of TWAMP. The default behavior if this item is not set is to use the DSCP value from the Control-Client's TCP SYN."; reference "RFC 5357: A Two-Way Active Measurement Protocol (TWAMP), Section 3.1"; } uses count; uses max-count-exponent; leaf modes { type twamp-modes; description "The bit mask of TWAMP-Modes this Server instance is willing to support; see the IANA 'TWAMP-Modes' Registry."; } uses key-management; list ctrl-connection { key "client-ip client-tcp-port server-ip server-tcp-port"; config false; description "List of all incoming TWAMP-Control (TCP) connections."; leaf client-ip { type inet:ip-address; description "The IP address on the remote Control-Client device, which is the source IP address used in the TWAMP-Control (TCP) packets belonging to this control connection."; } leaf client-tcp-port { type inet:port-number; description "The source TCP port number used in the TWAMP-Control (TCP) packets belonging to this control connection."; } leaf server-ip { type inet:ip-address; description "The IP address of the local Server device, which is the destination IP address used in the TWAMP-Control (TCP) packets belonging to this control connection."; } leaf server-tcp-port { type inet:port-number; description "The destination TCP port number used in the TWAMP-Control (TCP) packets belonging to this control connection. This will usually be the same value as the server-tcp-port configured under twamp/server. However, in the event that the user reconfigured server/server-tcp-port after this control connection was initiated, this value will indicate the server-tcp-port that is actually in use for this control connection."; } leaf state { type server-ctrl-connection-state; description "Indicates the Server TWAMP-Control connection state."; } leaf control-packet-dscp { type inet:dscp; description "The DSCP value used in the IP header of the TWAMP-Control (TCP) packets sent by the Server for this control connection. This will usually be the same value as is configured in the control-packet-dscp parameter under the twamp/server container. However, in the event that the user reconfigures server/dscp after this control connection is already in progress, this read-only value will show the actual DSCP value in use by this TWAMP-Control connection."; } leaf selected-mode { type twamp-modes; description "The mode that was chosen for this TWAMP-Control connection as set in the Mode field of the Set-Up-Response message."; } leaf key-id { type string { length "1..80"; } description "The KeyID value that is in use by this TWAMP-Control connection as selected by the Control-Client."; } uses count { description "The Count value that is in use by this TWAMP-Control connection. This will usually be the same value as is configured under twamp/server. However, in the event that the user reconfigures server/count after this control connection is already in progress, this read-only value will show the actual count that is in use for this TWAMP-Control connection."; } uses max-count-exponent { description "This read-only value indicates the actual max-count in use for this control connection. Usually, this would be the same value as is configured under twamp/server."; } leaf salt { type binary { length "16"; } description "A parameter used in deriving a key from a shared secret, as described in Section 3.1 of RFC 4656. It is communicated to the Control-Client as part of the Server Greeting message."; } leaf server-iv { type binary { length "16"; } description "The Server Initialization Vector (Server-IV) generated randomly by the Server."; } leaf challenge { type binary { length "16"; } description "A random sequence of octets generated by the Server. As described in client/token, a Challenge is used by the Control-Client to prove possession of a shared secret."; } } // list ctrl-connection } // container server container session-sender { if-feature session-sender; description "Configuration of the TWAMP Session-Sender logical entity."; leaf admin-state { type boolean; default "true"; description "Indicates whether the device is allowed to operate as a TWAMP Session-Sender."; } list test-session { key "name"; description "List of TWAMP Session-Sender test sessions."; leaf name { type string; description "A unique name for this TWAMP-Test session to be used for identifying this test session by the Session-Sender logical entity."; } leaf ctrl-connection-name { type string; config false; description "The name of the parent TWAMP-Control connection that is responsible for negotiating this TWAMP-Test session."; } leaf fill-mode { type padding-fill-mode; default "zero"; description "Indicates whether the padding added to the TWAMP-Test (UDP) packets (1) will contain pseudorandom numbers or (2) should consist of all zeros, as per Section 4.2.1 of RFC 5357."; } leaf number-of-packets { type uint32; mandatory true; description "The overall number of TWAMP-Test (UDP) packets to be transmitted by the Session-Sender for this test session."; } choice packet-distribution { description "Indicates the distribution to be used for transmitting the TWAMP-Test (UDP) packets."; leaf periodic-interval { type decimal64 { fraction-digits 5; } units "seconds"; mandatory true; description "Indicates the time to wait (in seconds) between the first bits of TWAMP-Test (UDP) packet transmissions for this test session."; reference "RFC 3432: Network performance measurement with periodic streams"; } case poisson { leaf lambda { type decimal64 { fraction-digits 5; } units "seconds"; mandatory true; description "Indicates the average time interval (in seconds) between packets in the Poisson distribution. The packet is calculated using the reciprocal of lambda and the TWAMP-Test packet size (which depends on the selected mode and the packet padding)."; reference "RFC 2330: Framework for IP Performance Metrics"; } leaf max-interval { type decimal64 { fraction-digits 5; } units "seconds"; description "Indicates the maximum time (in seconds) between packet transmissions."; reference "RFC 7312: Advanced Stream and Sampling Framework for IP Performance Metrics (IPPM)"; } } // case poisson } // choice packet-distribution leaf state { type sender-session-state; config false; description "Indicates the Session-Sender test session state."; } uses maintenance-statistics; } // list test-session } // container session-sender container session-reflector { if-feature session-reflector; description "Configuration of the TWAMP Session-Reflector logical entity."; leaf admin-state { type boolean; default "true"; description "Indicates whether the device is allowed to operate as a TWAMP Session-Reflector."; } leaf refwait { type uint32 { range "1..604800"; } units "seconds"; default "900"; description "The Session-Reflector MAY discontinue any session that has been started when no packet associated with that session has been received for REFWAIT seconds. As per Section 3.1 of RFC 5357, this timeout allows a Session-Reflector to free up resources in case of failure."; } list test-session { key "sender-ip sender-udp-port reflector-ip reflector-udp-port"; config false; description "TWAMP Session-Reflector test sessions."; leaf sid { type string; description "An auto-allocated identifier for this TWAMP-Test session that is unique within the context of this Server/Session-Reflector device only. This value is communicated to the Control-Client that requested the test session in the SID field of the Accept-Session message."; } leaf sender-ip { type inet:ip-address; description "The IP address on the remote device, which is the source IP address used in the TWAMP-Test (UDP) packets belonging to this test session."; } leaf sender-udp-port { type dynamic-port-number; description "The source UDP port used in the TWAMP-Test packets belonging to this test session."; } leaf reflector-ip { type inet:ip-address; description "The IP address of the local Session-Reflector device, which is the destination IP address used in the TWAMP-Test (UDP) packets belonging to this test session."; } leaf reflector-udp-port { type inet:port-number { range "862 | 49152..65535"; } description "The destination UDP port number used in the TWAMP-Test (UDP) test packets belonging to this test session."; } leaf parent-connection-client-ip { type inet:ip-address; description "The IP address on the Control-Client device, which is the source IP address used in the TWAMP-Control (TCP) packets belonging to the parent control connection that negotiated this test session."; } leaf parent-connection-client-tcp-port { type inet:port-number; description "The source TCP port number used in the TWAMP-Control (TCP) packets belonging to the parent control connection that negotiated this test session."; } leaf parent-connection-server-ip { type inet:ip-address; description "The IP address of the Server device, which is the destination IP address used in the TWAMP-Control (TCP) packets belonging to the parent control connection that negotiated this test session."; } leaf parent-connection-server-tcp-port { type inet:port-number; description "The destination TCP port number used in the TWAMP-Control (TCP) packets belonging to the parent control connection that negotiated this test session."; } leaf test-packet-dscp { type inet:dscp; description "The DSCP value present in the IP header of TWAMP-Test (UDP) packets belonging to this session."; } uses maintenance-statistics; } // list test-session } // container session-reflector } // container twamp } // module ietf-twamp
© 2023 YumaWorks, Inc. All rights reserved.