This YANG module defines the generic configuration data for key chains. It is intended that the module will be extended by vend...
Version: 2017-06-15
module ietf-key-chain { yang-version 1.1; namespace "urn:ietf:params:xml:ns:yang:ietf-key-chain"; prefix key-chain; import ietf-yang-types { prefix yang; } import ietf-netconf-acm { prefix nacm; } organization "IETF RTGWG - Routing Area Working Group"; contact "WG Web: <https://datatracker.ietf.org/group/rtgwg> WG List: <mailto:rtgwg@ietf.org> Editor: Acee Lindem <mailto:acee@cisco.com> Yingzhen Qu <mailto:yingzhen.qu@huawei.com> Derek Yeung <mailto:derek@arrcus.com> Ing-Wher Chen <mailto:Ing-Wher_Chen@jabail.com> Jeffrey Zhang <mailto:zzhang@juniper.net>"; description "This YANG module defines the generic configuration data for key chains. It is intended that the module will be extended by vendors to define vendor-specific key chain configuration parameters. Copyright (c) 2017 IETF Trust and the persons identified as authors of the code. All rights reserved. Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Simplified BSD License set forth in Section 4.c of the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info). This version of this YANG module is part of RFC 8177; see the RFC itself for full legal notices."; reference "RFC 8177"; revision "2017-06-15" { description "Initial RFC Revision"; reference "RFC 8177: YANG Data Model for Key Chains"; } feature hex-key-string { description "Support hexadecimal key string."; } feature accept-tolerance { description "Support the tolerance or acceptance limit."; } feature independent-send-accept-lifetime { description "Support for independent send and accept key lifetimes."; } feature crypto-hmac-sha-1-12 { description "Support for TCP HMAC-SHA-1 12-byte digest hack."; } feature cleartext { description "Support for cleartext algorithm. Usage is NOT RECOMMENDED."; } feature aes-cmac-prf-128 { description "Support for AES Cipher-based Message Authentication Code Pseudorandom Function."; } feature aes-key-wrap { description "Support for Advanced Encryption Standard (AES) Key Wrap."; } feature replay-protection-only { description "Provide replay protection without any authentication as required by protocols such as Bidirectional Forwarding Detection (BFD)."; } identity crypto-algorithm { description "Base identity of cryptographic algorithm options."; } identity hmac-sha-1-12 { base crypto-algorithm; description "The HMAC-SHA1-12 algorithm."; } identity aes-cmac-prf-128 { base crypto-algorithm; description "The AES-CMAC-PRF-128 algorithm - required by RFC 5926 for TCP-AO key derivation functions."; } identity md5 { base crypto-algorithm; description "The MD5 algorithm."; } identity sha-1 { base crypto-algorithm; description "The SHA-1 algorithm."; } identity hmac-sha-1 { base crypto-algorithm; description "HMAC-SHA-1 authentication algorithm."; } identity hmac-sha-256 { base crypto-algorithm; description "HMAC-SHA-256 authentication algorithm."; } identity hmac-sha-384 { base crypto-algorithm; description "HMAC-SHA-384 authentication algorithm."; } identity hmac-sha-512 { base crypto-algorithm; description "HMAC-SHA-512 authentication algorithm."; } identity cleartext { base crypto-algorithm; description "cleartext."; } identity replay-protection-only { base crypto-algorithm; description "Provide replay protection without any authentication as required by protocols such as Bidirectional Forwarding Detection (BFD)."; } typedef key-chain-ref { type leafref { path "/key-chain:key-chains/key-chain:key-chain/key-chain:name"; } description "This type is used by data models that need to reference configured key chains."; } container key-chains { description "All configured key-chains on the device."; list key-chain { key "name"; description "List of key-chains."; leaf name { type string; description "Name of the key-chain."; } leaf description { type string; description "A description of the key-chain"; } container accept-tolerance { if-feature accept-tolerance; description "Tolerance for key lifetime acceptance (seconds)."; leaf duration { type uint32; units "seconds"; default "0"; description "Tolerance range, in seconds."; } } // container accept-tolerance leaf last-modified-timestamp { type yang:date-and-time; config false; description "Timestamp of the most recent update to the key-chain"; } list key { key "key-id"; description "Single key in key chain."; leaf key-id { type uint64; description "Numeric value uniquely identifying the key"; } container lifetime { description "Specify a key's lifetime."; choice lifetime { description "Options for specification of send and accept lifetimes."; case send-and-accept-lifetime { description "Send and accept key have the same lifetime."; container send-accept-lifetime { description "Single lifetime specification for both send and accept lifetimes."; choice lifetime { default "always"; description "Options for specifying key accept or send lifetimes"; leaf always { type empty; description "Indicates key lifetime is always valid."; } case start-end-time { leaf start-date-time { type yang:date-and-time; description "Start time."; } choice end-time { default "infinite"; description "End-time setting."; leaf no-end-time { type empty; description "Indicates key lifetime end-time is infinite."; } leaf duration { type uint32 { range "1..2147483646"; } units "seconds"; description "Key lifetime duration, in seconds"; } leaf end-date-time { type yang:date-and-time; description "End time."; } } // choice end-time } // case start-end-time } // choice lifetime } // container send-accept-lifetime } // case send-and-accept-lifetime case independent-send-accept-lifetime { if-feature independent-send-accept-lifetime; description "Independent send and accept key lifetimes."; container send-lifetime { description "Separate lifetime specification for send lifetime."; choice lifetime { default "always"; description "Options for specifying key accept or send lifetimes"; leaf always { type empty; description "Indicates key lifetime is always valid."; } case start-end-time { leaf start-date-time { type yang:date-and-time; description "Start time."; } choice end-time { default "infinite"; description "End-time setting."; leaf no-end-time { type empty; description "Indicates key lifetime end-time is infinite."; } leaf duration { type uint32 { range "1..2147483646"; } units "seconds"; description "Key lifetime duration, in seconds"; } leaf end-date-time { type yang:date-and-time; description "End time."; } } // choice end-time } // case start-end-time } // choice lifetime } // container send-lifetime container accept-lifetime { description "Separate lifetime specification for accept lifetime."; choice lifetime { default "always"; description "Options for specifying key accept or send lifetimes"; leaf always { type empty; description "Indicates key lifetime is always valid."; } case start-end-time { leaf start-date-time { type yang:date-and-time; description "Start time."; } choice end-time { default "infinite"; description "End-time setting."; leaf no-end-time { type empty; description "Indicates key lifetime end-time is infinite."; } leaf duration { type uint32 { range "1..2147483646"; } units "seconds"; description "Key lifetime duration, in seconds"; } leaf end-date-time { type yang:date-and-time; description "End time."; } } // choice end-time } // case start-end-time } // choice lifetime } // container accept-lifetime } // case independent-send-accept-lifetime } // choice lifetime } // container lifetime leaf crypto-algorithm { type identityref { base crypto-algorithm; } mandatory true; description "Cryptographic algorithm associated with key."; } container key-string { nacm:default-deny-all; description "The key string."; choice key-string-style { description "Key string styles"; leaf keystring { type string; description "Key string in ASCII format."; } case hexadecimal { if-feature hex-key-string; leaf hexadecimal-string { type yang:hex-string; description "Key in hexadecimal string format. When compared to ASCII, specification in hexadecimal affords greater key entropy with the same number of internal key-string octets. Additionally, it discourages usage of well-known words or numbers."; } } // case hexadecimal } // choice key-string-style } // container key-string leaf send-lifetime-active { type boolean; config false; description "Indicates if the send lifetime of the key-chain key is currently active."; } leaf accept-lifetime-active { type boolean; config false; description "Indicates if the accept lifetime of the key-chain key is currently active."; } } // list key } // list key-chain container aes-key-wrap { if-feature aes-key-wrap; description "AES Key Wrap encryption for key-chain key-strings. The encrypted key-strings are encoded as hexadecimal key strings using the hex-key-string leaf."; leaf enable { type boolean; default "false"; description "Enable AES Key Wrap encryption."; } } // container aes-key-wrap } // container key-chains } // module ietf-key-chain
© 2023 YumaWorks, Inc. All rights reserved.