This module defines an interface for managing alarms. Main inputs to the module design are the 3GPP Alarm Integration Reference...
Version: 2019-09-11
module ietf-alarms { yang-version 1.1; namespace "urn:ietf:params:xml:ns:yang:ietf-alarms"; prefix al; import ietf-yang-types { prefix yang; reference "RFC 6991: Common YANG Data Types."; } organization "IETF CCAMP Working Group"; contact "WG Web: <https://trac.ietf.org/trac/ccamp> WG List: <mailto:ccamp@ietf.org> Editor: Stefan Vallin <mailto:stefan@wallan.se> Editor: Martin Bjorklund <mailto:mbj@tail-f.com>"; description "This module defines an interface for managing alarms. Main inputs to the module design are the 3GPP Alarm Integration Reference Point (IRP), ITU-T X.733, and ANSI/ISA-18.2 alarm standards. Main features of this module include: * Alarm list: A list of all alarms. Cleared alarms stay in the list until explicitly purged. * Operator actions on alarms: Acknowledging and closing alarms. * Administrative actions on alarms: Purging alarms from the list according to specific criteria. * Alarm inventory: A management application can read all alarm types implemented by the system. * Alarm shelving: Shelving (blocking) alarms according to specific criteria. * Alarm profiles: A management system can attach further information to alarm types, for example, overriding system-default severity levels. This module uses a stateful view on alarms. An alarm is a state for a specific resource (note that an alarm is not a notification). An alarm type is a possible alarm state for a resource. For example, the tuple: ('link-alarm', 'GigabitEthernet0/25') is an alarm of type 'link-alarm' on the resource 'GigabitEthernet0/25'. Alarm types are identified using YANG identities and an optional string-based qualifier. The string-based qualifier allows for dynamic extension of the statically defined alarm types. Alarm types identify a possible alarm state and not the individual notifications. For example, the traditional 'link-down' and 'link-up' notifications are two notifications referring to the same alarm type 'link-alarm'. With this design, there is no ambiguity about how alarm and alarm clear correlation should be performed; notifications that report the same resource and alarm type are considered updates of the same alarm, e.g., clearing an active alarm or changing the severity of an alarm. The instrumentation can update the severity and alarm text on an existing alarm. The above alarm example can therefore look like the following: (('link-alarm', 'GigabitEthernet0/25'), warning, 'interface down while interface admin state is up') There is a clear separation between updates on the alarm from the underlying resource, like clear, and updates from an operator, like acknowledging or closing an alarm: (('link-alarm', 'GigabitEthernet0/25'), warning, 'interface down while interface admin state is up', cleared, closed) Administrative actions like removing closed alarms older than a given time is supported. This YANG module does not define how the underlying instrumentation detects and clears the specific alarms. That belongs to the Standards Development Organization (SDO) or enterprise that owns that specific technology. The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this document are to be interpreted as described in BCP 14 (RFC 2119) (RFC 8174) when, and only when, they appear in all capitals, as shown here. Copyright (c) 2019 IETF Trust and the persons identified as authors of the code. All rights reserved. Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Simplified BSD License set forth in Section 4.c of the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info). This version of this YANG module is part of RFC 8632; see the RFC itself for full legal notices."; revision "2019-09-11" { description "Initial revision."; reference "RFC 8632: A YANG Data Model for Alarm Management"; } feature operator-actions { description "This feature indicates that the system supports operator states on alarms."; } feature alarm-shelving { description "This feature indicates that the system supports shelving (blocking) alarms. Alarm shelving may have an impact on server processing resources in order to match alarms against shelf criteria."; } feature alarm-history { description "This feature indicates that the server maintains a history of state changes for each alarm. For example, if an alarm toggles between cleared and active 10 times, these state changes are present in a separate list in the alarm. Keeping the alarm history may have an impact on server memory resources."; } feature alarm-summary { description "This feature indicates that the server summarizes the number of alarms per severity and operator state."; } feature alarm-profile { description "The system enables clients to configure further information to each alarm type."; } feature severity-assignment { description "The system supports configurable alarm severity levels."; reference "ITU-T Recommendation M.3100: Generic network information model ITU-T Recommendation M.3160: Generic, protocol-neutral management information model"; } feature root-cause-analysis { description "The system supports identifying candidate root-cause resources for an alarm, for example, a disk partition root cause for a logger failure alarm."; } feature service-impact-analysis { description "The system supports identifying candidate-impacted resources for an alarm, for example, an interface state change resulting in a link alarm, which can refer to a link as being impacted."; } feature alarm-correlation { description "The system supports correlating/grouping alarms that belong together."; } identity alarm-type-id { description "Base identity for alarm types. A unique identification of the alarm, not including the resource. Different resources can share alarm types. If the resource reports the same alarm type, it is considered to be the same alarm. The alarm type is a simplification of the different X.733 and 3GPP Alarm IRP correlation mechanisms, and it allows for hierarchical extensions. A string-based qualifier can be used in addition to the identity in order to have different alarm types based on information not known at design time, such as values in textual SNMP Notification varbinds. Standards and vendors can define sub-identities to clearly identify specific alarm types. This identity is abstract and MUST NOT be used for alarms."; } typedef resource { type union { type instance-identifier; type yang:object-identifier; type string; type yang:uuid; } description "This is an identification of the alarming resource, such as an interface. It should be as fine-grained as possible to both guide the operator and guarantee uniqueness of the alarms. If the alarming resource is modeled in YANG, this type will be an instance-identifier. If the resource is an SNMP object, the type will be an 'object-identifier'. If the resource is anything else, for example, a distinguished name or a Common Information Model (CIM) path, this type will be a string. If the alarming object is identified by a Universally Unique Identifier (UUID), use the uuid type. Be cautious when using this type, since a UUID is hard to use for an operator. If the server supports several models, the precedence should be in the order as given in the union definition."; } typedef resource-match { type union { type yang:xpath1.0; type yang:object-identifier; type string; } description "This type is used to match resources of type 'resource'. Since the type 'resource' is a union of different types, the 'resource-match' type is also a union of corresponding types. If the type is given as an XPath 1.0 expression, a resource of type 'instance-identifier' matches if the instance is part of the node set that is the result of evaluating the XPath 1.0 expression. For example, the XPath 1.0 expression: /ietf-interfaces:interfaces/ietf-interfaces:interface [ietf-interfaces:type='ianaift:ethernetCsmacd'] would match the resource instance-identifier: /if:interfaces/if:interface[if:name='eth1'], assuming that the interface 'eth1' is of type 'ianaift:ethernetCsmacd'. If the type is given as an object identifier, a resource of type 'object-identifier' matches if the match object identifier is a prefix of the resource's object identifier. For example, the value: 1.3.6.1.2.1.2.2 would match the resource object identifier: 1.3.6.1.2.1.2.2.1.1.5 If the type is given as an UUID or a string, it is interpreted as an XML Schema regular expression, which matches a resource of type 'yang:uuid' or 'string' if the given regular expression matches the resource string. If the type is given as an XPath expression, it is evaluated in the following XPath context: o The set of namespace declarations is the set of prefix and namespace pairs for all YANG modules implemented by the server, where the prefix is the YANG module name and the namespace is as defined by the 'namespace' statement in the YANG module. If a leaf of this type is encoded in XML, all namespace declarations in scope on the leaf element are added to the set of namespace declarations. If a prefix found in the XML is already present in the set of namespace declarations, the namespace in the XML is used. o The set of variable bindings is empty. o The function library is the core function library, and the functions are defined in Section 10 of RFC 7950. o The context node is the root node in the data tree."; reference "XML Schema Part 2: Datatypes Second Edition, World Wide Web Consortium Recommendation REC-xmlschema-2-20041028"; } typedef alarm-text { type string; description "The string used to inform operators about the alarm. This MUST contain enough information for an operator to be able to understand the problem and how to resolve it. If this string contains structure, this format should be clearly documented for programs to be able to parse that information."; } typedef severity { type enumeration { enum "indeterminate" { value 2; description "Indicates that the severity level could not be determined. This level SHOULD be avoided."; } enum "warning" { value 3; description "The 'warning' severity level indicates the detection of a potential or impending service-affecting fault, before any significant effects have been felt. Action should be taken to further diagnose (if necessary) and correct the problem in order to prevent it from becoming a more serious service-affecting fault."; } enum "minor" { value 4; description "The 'minor' severity level indicates the existence of a non-service-affecting fault condition and that corrective action should be taken in order to prevent a more serious (for example, service-affecting) fault. Such a severity can be reported, for example, when the detected alarm condition is not currently degrading the capacity of the resource."; } enum "major" { value 5; description "The 'major' severity level indicates that a service- affecting condition has developed and an urgent corrective action is required. Such a severity can be reported, for example, when there is a severe degradation in the capability of the resource and its full capability must be restored."; } enum "critical" { value 6; description "The 'critical' severity level indicates that a service- affecting condition has occurred and an immediate corrective action is required. Such a severity can be reported, for example, when a resource becomes totally out of service and its capability must be restored."; } } description "The severity level of the alarm. Note well that the value 'clear' is not included. Whether or not an alarm is cleared is a separate boolean flag."; reference "ITU-T Recommendation X.733: Information Technology - Open Systems Interconnection - System Management: Alarm Reporting Function"; } typedef severity-with-clear { type union { type enumeration { enum "cleared" { value 1; description "The alarm is cleared by the instrumentation."; } } type severity; } description "The severity level of the alarm including clear. This is used only in notifications reporting state changes for an alarm."; } typedef writable-operator-state { type enumeration { enum "none" { value 1; description "The alarm is not being taken care of."; } enum "ack" { value 2; description "The alarm is being taken care of. Corrective action not taken yet or has failed"; } enum "closed" { value 3; description "Corrective action taken successfully."; } } description "Operator states on an alarm. The 'closed' state indicates that an operator considers the alarm being resolved. This is separate from the alarm's 'is-cleared' leaf."; } typedef operator-state { type union { type writable-operator-state; type enumeration { enum "shelved" { value 4; description "The alarm is shelved. Alarms in /alarms/shelved-alarms/ MUST be assigned this operator state by the server as the last entry in the 'operator-state-change' list. The text for that entry SHOULD include the shelf name."; } enum "un-shelved" { value 5; description "The alarm is moved back to 'alarm-list' from a shelf. Alarms that are moved from /alarms/shelved-alarms/ to /alarms/alarm-list MUST be assigned this state by the server as the last entry in the 'operator-state-change' list. The text for that entry SHOULD include the shelf name."; } } } description "Operator states on an alarm. The 'closed' state indicates that an operator considers the alarm being resolved. This is separate from the alarm's 'is-cleared' leaf."; } typedef alarm-type-id { type identityref { base alarm-type-id; } description "Identifies an alarm type. The description of the alarm type id MUST indicate whether or not the alarm type is abstract. An abstract alarm type is used as a base for other alarm type ids and will not be used as a value for an alarm or be present in the alarm inventory."; } typedef alarm-type-qualifier { type string; description "If an alarm type cannot be fully specified at design time by 'alarm-type-id', this string qualifier is used in addition to fully define a unique alarm type. The definition of alarm qualifiers is considered to be part of the instrumentation and is out of scope for this module. An empty string is used when this is part of a key."; } container alarms { description "The top container for this module."; container control { description "Configuration to control the alarm behavior."; leaf max-alarm-status-changes { type union { type uint16; type enumeration { enum "infinite" { value 0; description "The status-change entries are accumulated infinitely."; } } } default "32"; description "The 'status-change' entries are kept in a circular list per alarm. When this number is exceeded, the oldest status change entry is automatically removed. If the value is 'infinite', the status-change entries are accumulated infinitely."; } leaf notify-status-changes { type enumeration { enum "all-state-changes" { value 0; description "Send notifications for all status changes."; } enum "raise-and-clear" { value 1; description "Send notifications only for raise, clear, and re-raise. Notifications for severity-level changes or alarm-text changes are not sent."; } enum "severity-level" { value 2; description "Only send notifications for alarm-state changes crossing the level specified in 'notify-severity-level'. Always send clear notifications."; } } must ". != "severity-level" or ../notify-severity-level" { description "When notify-status-changes is 'severity-level', a value must be given for 'notify-severity-level'."; } default "all-state-changes"; description "This leaf controls the notifications sent for alarm status updates. There are three options: 1. Notifications are sent for all updates, severity-level changes, and alarm-text changes. 2. Notifications are only sent for alarm raise and clear. 3. Notifications are sent for status changes equal to or above the specified severity level. Clear notifications shall always be sent. Notifications shall also be sent for state changes that make an alarm less severe than the specified level. For example, in option 3, assume that the severity level is set to major and that the alarm has the following state changes: [(Time, severity, clear)]: [(T1, major, -), (T2, minor, -), (T3, warning, -), (T4, minor, -), (T5, major, -), (T6, critical, -), (T7, major. -), (T8, major, clear)] In that case, notifications will be sent at times T1, T2, T5, T6, T7, and T8."; } leaf notify-severity-level { when "../notify-status-changes = "severity-level""; type severity; description "Only send notifications for alarm-state changes crossing the specified level. Always send clear notifications."; } container alarm-shelving { if-feature alarm-shelving; description "The 'alarm-shelving/shelf' list is used to shelve (block/filter) alarms. The conditions in the shelf criteria are logically ANDed. The first matching shelf is used, and an alarm is shelved only for this first match. Matching alarms MUST appear in the /alarms/shelved-alarms/shelved-alarm list, and non-matching /alarms MUST appear in the /alarms/alarm-list/alarm list. The server does not send any notifications for shelved alarms. The server MUST maintain states (e.g., severity changes) for the shelved alarms. Alarms that match the criteria shall have an operator state 'shelved'. When the shelf configuration removes an alarm from the shelf, the server shall add the operator state 'un-shelved'."; list shelf { key "name"; ordered-by user; description "Each entry defines the criteria for shelving alarms. Criteria are ANDed. If no criteria are specified, all alarms will be shelved."; leaf name { type string; description "An arbitrary name for the alarm shelf."; } leaf-list resource { type resource-match; description "Shelve alarms for matching resources."; } list alarm-type { key "alarm-type-id alarm-type-qualifier-match"; description "Any alarm matching the combined criteria of 'alarm-type-id' and 'alarm-type-qualifier-match' MUST be matched."; leaf alarm-type-id { type alarm-type-id; description "Shelve all alarms that have an 'alarm-type-id' that is equal to or derived from the given 'alarm-type-id'."; } leaf alarm-type-qualifier-match { type string; description "An XML Schema regular expression that is used to match an alarm type qualifier. Shelve all alarms that match this regular expression for the alarm type qualifier."; reference "XML Schema Part 2: Datatypes Second Edition, World Wide Web Consortium Recommendation REC-xmlschema-2-20041028"; } } // list alarm-type leaf description { type string; description "An optional textual description of the shelf. This description should include the reason for shelving these alarms."; } } // list shelf } // container alarm-shelving list x733-mapping { if-feature configure-x733-mapping; key "alarm-type-id alarm-type-qualifier-match"; description "This list allows a management application to control the X.733 mapping for all alarm types in the system. Any entry in this list will allow the alarm manager to override the default X.733 mapping in the system, and the final mapping will be shown in the alarm inventory."; leaf alarm-type-id { type alarm-type-id; description "Map the alarm type with this alarm type identifier."; } leaf alarm-type-qualifier-match { type string; description "A W3C regular expression that is used when mapping an alarm type and alarm-type-qualifier to X.733 parameters."; } leaf event-type { type event-type; description "The alarm type has this X.733/X.736 event type."; } leaf probable-cause { type uint32; description "The alarm type has this X.733 probable cause value. This module defines probable cause as an integer and not as an enumeration. The reason being that the primary use of probable cause is in the management application if it is based on the X.733 standard. However, most management applications have their own defined enum definitions and merging enums from different systems might create conflicts. By using a configurable uint32, the system can be configured to match the enum values in the management application."; } leaf probable-cause-string { type string; description "This string can be used to give a user-friendly string to the probable cause value."; } } // list x733-mapping } // container control container alarm-inventory { config false; description "The 'alarm-inventory/alarm-type' list contains all possible alarm types for the system. If the system knows for which resources a specific alarm type can appear, it is also identified in the inventory. The list also tells if each alarm type has a corresponding clear state. The inventory shall only contain concrete alarm types. The alarm inventory MUST be updated by the system when new alarms can appear. This can be the case when installing new software modules or inserting new card types. A notification 'alarm-inventory-changed' is sent when the inventory is changed."; list alarm-type { key "alarm-type-id alarm-type-qualifier"; description "An entry in this list defines a possible alarm."; leaf alarm-type-id { type alarm-type-id; description "The statically defined alarm type identifier for this possible alarm."; } leaf alarm-type-qualifier { type alarm-type-qualifier; description "The optionally dynamically defined alarm type identifier for this possible alarm."; } leaf-list resource { type resource-match; description "Optionally, specifies for which resources the alarm type is valid."; } leaf will-clear { type boolean; mandatory true; description "This leaf tells the operator if the alarm will be cleared when the correct corrective action has been taken. Implementations SHOULD strive for detecting the cleared state for all alarm types. If this leaf is 'true', the operator can monitor the alarm until it becomes cleared after the corrective action has been taken. If this leaf is 'false', the operator needs to validate that the alarm is no longer active using other mechanisms. Alarms can lack a corresponding clear due to missing instrumentation or no logical corresponding clear state."; } leaf-list severity-level { type severity; description "This leaf-list indicates the possible severity levels of this alarm type. Note well that 'clear' is not part of the severity type. In general, the severity level should be defined by the instrumentation based on the dynamic state, rather than being defined statically by the alarm type, in order to provide a relevant severity level based on dynamic state and context. However, most alarm types have a defined set of possible severity levels, and this should be provided here."; } leaf description { type string; mandatory true; description "A description of the possible alarm. It SHOULD include information on possible underlying root causes and corrective actions."; } leaf event-type { type event-type; description "The alarm type has this X.733/X.736 event type."; } leaf probable-cause { type uint32; description "The alarm type has this X.733 probable cause value. This module defines probable cause as an integer and not as an enumeration. The reason being that the primary use of probable cause is in the management application if it is based on the X.733 standard. However, most management applications have their own defined enum definitions and merging enums from different systems might create conflicts. By using a configurable uint32, the system can be configured to match the enum values in the management application."; } leaf probable-cause-string { type string; description "This string can be used to give a user-friendly string to the probable cause value."; } } // list alarm-type } // container alarm-inventory container summary { if-feature alarm-summary; config false; description "This container gives a summary of the number of alarms."; list alarm-summary { key "severity"; description "A global summary of all alarms in the system. The summary does not include shelved alarms."; leaf severity { type severity; description "Alarm summary for this severity level."; } leaf total { type yang:gauge32; description "Total number of alarms of this severity level."; } leaf not-cleared { type yang:gauge32; description "Total number of alarms of this severity level that are not cleared."; } leaf cleared { type yang:gauge32; description "For this severity level, the number of alarms that are cleared."; } leaf cleared-not-closed { if-feature operator-actions; type yang:gauge32; description "For this severity level, the number of alarms that are cleared but not closed."; } leaf cleared-closed { if-feature operator-actions; type yang:gauge32; description "For this severity level, the number of alarms that are cleared and closed."; } leaf not-cleared-closed { if-feature operator-actions; type yang:gauge32; description "For this severity level, the number of alarms that are not cleared but closed."; } leaf not-cleared-not-closed { if-feature operator-actions; type yang:gauge32; description "For this severity level, the number of alarms that are not cleared and not closed."; } } // list alarm-summary leaf shelves-active { if-feature alarm-shelving; type empty; description "This is a hint to the operator that there are active alarm shelves. This leaf MUST exist if the /alarms/shelved-alarms/number-of-shelved-alarms is > 0."; } } // container summary container alarm-list { config false; description "The alarms in the system."; leaf number-of-alarms { type yang:gauge32; description "This object shows the total number of alarms in the system, i.e., the total number of entries in the alarm list."; } leaf last-changed { type yang:date-and-time; description "A timestamp when the alarm list was last changed. The value can be used by a manager to initiate an alarm resynchronization procedure."; } list alarm { key "resource alarm-type-id alarm-type-qualifier"; description "The list of alarms. Each entry in the list holds one alarm for a given alarm type and resource. An alarm can be updated from the underlying resource or by the user. The following leafs are maintained by the resource: 'is-cleared', 'last-change', 'perceived-severity', and 'alarm-text'. An operator can change 'operator-state' and 'operator-text'. Entries appear in the alarm list the first time an alarm becomes active for a given alarm type and resource. Entries do not get deleted when the alarm is cleared. Clear status is represented as a boolean flag. Alarm entries are removed, i.e., purged, from the list by an explicit purge action. For example, purge all alarms that are cleared and in closed operator state that are older than 24 hours. Purged alarms are removed from the alarm list. If the alarm resource state changes after a purge, the alarm will reappear in the alarm list. Systems may also remove alarms based on locally configured policies; this is out of scope for this module."; leaf resource { type resource; mandatory true; description "The alarming resource. See also 'alt-resource'. This could be, for example, a reference to the alarming interface"; } leaf alarm-type-id { type alarm-type-id; mandatory true; description "This leaf and the leaf 'alarm-type-qualifier' together provide a unique identification of the alarm type."; } leaf alarm-type-qualifier { type alarm-type-qualifier; description "This leaf is used when the 'alarm-type-id' leaf cannot uniquely identify the alarm type. Normally, this is not the case, and this leaf is the empty string."; } leaf-list alt-resource { type resource; description "Used if the alarming resource is available over other interfaces. This field can contain SNMP OIDs, CIM paths, or 3GPP distinguished names, for example."; } list related-alarm { if-feature alarm-correlation; key "resource alarm-type-id alarm-type-qualifier"; description "References to related alarms. Note that the related alarm might have been purged from the alarm list."; leaf resource { type leafref { path "/alarms/alarm-list/alarm/resource"; require-instance false; } description "The alarming resource for the related alarm."; } leaf alarm-type-id { type leafref { path "/alarms/alarm-list/alarm[resource=current()/../resource]/alarm-type-id"; require-instance false; } description "The alarm type identifier for the related alarm."; } leaf alarm-type-qualifier { type leafref { path "/alarms/alarm-list/alarm[resource=current()/../resource][alarm-type-id=current()/../alarm-type-id]/alarm-type-qualifier"; require-instance false; } description "The alarm qualifier for the related alarm."; } } // list related-alarm leaf-list impacted-resource { if-feature service-impact-analysis; type resource; description "Resources that might be affected by this alarm. If the system creates an alarm on a resource and also has a mapping to other resources that might be impacted, these resources can be listed in this leaf-list. In this way, the system can create one alarm instead of several. For example, if an interface has an alarm, the 'impacted-resource' can reference the aggregated port channels."; } leaf-list root-cause-resource { if-feature root-cause-analysis; type resource; description "Resources that are candidates for causing the alarm. If the system has a mechanism to understand the candidate root causes of an alarm, this leaf-list can be used to list the root-cause candidate resources. In this way, the system can create one alarm instead of several. An example might be a logging system (alarm resource) that fails; the alarm can reference the file system in the 'root-cause-resource' leaf-list. Note that the intended use is not to also send an alarm with the 'root-cause-resource' as an alarming resource. The 'root-cause-resource' leaf-list is a hint and should not also generate an alarm for the same problem."; } leaf time-created { type yang:date-and-time; mandatory true; description "The timestamp when this alarm entry was created. This represents the first time the alarm appeared; it can also represent that the alarm reappeared after a purge. Further state changes of the same alarm do not change this leaf; these changes will update the 'last-changed' leaf."; } leaf is-cleared { type boolean; mandatory true; description "Indicates the current clearance state of the alarm. An alarm might toggle from active alarm to cleared alarm and back to active again."; } leaf last-raised { type yang:date-and-time; mandatory true; description "An alarm may change severity level and toggle between active and cleared during its lifetime. This leaf indicates the last time it was raised ('is-cleared' = 'false')."; } leaf last-changed { type yang:date-and-time; mandatory true; description "A timestamp when the 'status-change' or 'operator-state-change' list was last changed."; } leaf perceived-severity { type severity; mandatory true; description "The last severity of the alarm. If an alarm was raised with severity 'warning' but later changed to 'major', this leaf will show 'major'."; } leaf alarm-text { type alarm-text; mandatory true; description "The last reported alarm text. This text should contain information for an operator to be able to understand the problem and how to resolve it."; } list status-change { if-feature alarm-history; key "time"; min-elements 1; description "A list of status-change events for this alarm. The entry with latest timestamp in this list MUST correspond to the leafs 'is-cleared', 'perceived-severity', and 'alarm-text' for the alarm. This list is ordered according to the timestamps of alarm state changes. The first item corresponds to the latest state change. The following state changes create an entry in this list: - changed severity (warning, minor, major, critical) - clearance status; this also updates the 'is-cleared' leaf - alarm-text update"; leaf time { type yang:date-and-time; mandatory true; description "The time the status of the alarm changed. The value represents the time the real alarm-state change appeared in the resource and not when it was added to the alarm list. The /alarm-list/alarm/last-changed MUST be set to the same value."; } leaf perceived-severity { type severity-with-clear; mandatory true; description "The severity of the alarm as defined by X.733. Note that this may not be the original severity since the alarm may have changed severity."; reference "ITU-T Recommendation X.733: Information Technology - Open Systems Interconnection - System Management: Alarm Reporting Function"; } leaf alarm-text { type alarm-text; mandatory true; description "A user-friendly text describing the alarm-state change."; reference "ITU-T Recommendation X.733: Information Technology - Open Systems Interconnection - System Management: Alarm Reporting Function"; } } // list status-change list operator-state-change { if-feature operator-actions; key "time"; description "This list is used by operators to indicate the state of human intervention on an alarm. For example, if an operator has seen an alarm, the operator can add a new item to this list indicating that the alarm is acknowledged."; leaf time { type yang:date-and-time; mandatory true; description "Timestamp for operator action on the alarm."; } leaf operator { type string; mandatory true; description "The name of the operator that has acted on this alarm."; } leaf state { type operator-state; mandatory true; description "The operator's view of the alarm state."; } leaf text { type string; description "Additional optional textual information provided by the operator."; } } // list operator-state-change action set-operator-state { if-feature operator-actions; description "This is a means for the operator to indicate the level of human intervention on an alarm."; input { leaf state { type writable-operator-state; mandatory true; description "Set this operator state."; } leaf text { type string; description "Additional optional textual information."; } } } // rpc set-operator-state notification operator-action { if-feature operator-actions; description "This notification is used to report that an operator acted upon an alarm."; leaf time { type yang:date-and-time; mandatory true; description "Timestamp for operator action on the alarm."; } leaf operator { type string; mandatory true; description "The name of the operator that has acted on this alarm."; } leaf state { type operator-state; mandatory true; description "The operator's view of the alarm state."; } leaf text { type string; description "Additional optional textual information provided by the operator."; } } // notification operator-action leaf event-type { type event-type; description "The X.733/X.736 event type for this alarm."; } leaf probable-cause { type uint32; description "The X.733 probable cause for this alarm."; } leaf probable-cause-string { type string; description "The user-friendly string matching the probable cause integer value. The string SHOULD match the X.733 enumeration. For example, value 27 is 'localNodeTransmissionError'."; } container threshold-information { description "This parameter shall be present when the alarm is a result of crossing a threshold. "; leaf triggered-threshold { type string; description "The identifier of the threshold attribute that caused the notification."; } leaf observed-value { type value-type; description "The value of the gauge or counter that crossed the threshold. This may be different from the threshold value if, for example, the gauge may only take on discrete values."; } choice threshold-level { description "In the case of a gauge, the threshold level specifies a pair of threshold values: the first is the value of the crossed threshold, and the second is its corresponding hysteresis; in the case of a counter, the threshold level specifies only the threshold value."; case up { leaf up-high { type value-type; description "The going-up threshold for raising the alarm."; } leaf up-low { type value-type; description "The going-down threshold for clearing the alarm. This is used for hysteresis functions for gauges."; } } // case up case down { leaf down-low { type value-type; description "The going-down threshold for raising the alarm."; } leaf down-high { type value-type; description "The going-up threshold for clearing the alarm. This is used for hysteresis functions for gauges."; } } // case down } // choice threshold-level leaf arm-time { type yang:date-and-time; description "For a gauge threshold, it's the time at which the threshold was last re-armed; namely, it's the time after the previous threshold crossing at which the hysteresis value of the threshold was exceeded, thus again permitting the generation of notifications when the threshold is crossed. For a counter threshold, it's the later of the time at which the threshold offset was last applied or the counter was last initialized (for resettable counters)."; } } // container threshold-information list monitored-attributes { key "id"; description "The Monitored attributes parameter, when present, defines one or more attributes of the resource and their corresponding values at the time of the alarm."; leaf id { type resource; description "The resource representing the attribute."; } leaf value { type string; description "The value represented as a string since it could be of any type."; } } // list monitored-attributes leaf-list proposed-repair-actions { type string; description "This parameter, when present, is used if the cause is known and the system being managed can suggest one or more solutions (such as switch in standby equipment, retry, and replace media)."; } leaf trend-indication { type trend; description "This parameter specifies the current severity trend of the resource. If present, it indicates that there are one or more alarms ('outstanding alarms') that have not been cleared and that pertain to the same resource as this alarm ('current alarm') does. The possible values are: more-severe: The Perceived severity in the current alarm is higher (more severe) than that reported in any of the outstanding alarms. no-change: The Perceived severity reported in the current alarm is the same as the highest (most severe) of any of the outstanding alarms. less-severe: There is at least one outstanding alarm of a severity higher (more severe) than that in the current alarm."; } leaf backedup-status { type boolean; description "This parameter, when present, specifies whether or not the object emitting the alarm has been backed up; therefore, it is possible to know whether or not services provided to the user have been disrupted when this parameter is included. The use of this field in conjunction with the 'perceived-severity' field provides information in an independent form to qualify the seriousness of the alarm and the ability of the system as a whole to continue to provide services. If the value of this parameter is true, it indicates that the object emitting the alarm has been backed up; if false, the object has not been backed up."; } leaf backup-object { type resource; description "This parameter SHALL be present when the 'backedup-status' parameter is present and has the value 'true'. This parameter specifies the managed object instance that is providing back-up services for the managed object to which the notification pertains. This parameter is useful, for example, when the back-up object is from a pool of objects, any of which may be dynamically allocated to replace a faulty object."; } list additional-information { key "identifier"; description "This parameter allows the inclusion of an additional information set in the alarm. It is a series of data structures, each of which contains three items of information: an identifier, a significance indicator, and the problem information."; leaf identifier { type string; description "Identifies the data type of the information parameter."; } leaf significant { type boolean; description "Set to 'true' if the receiving system must be able to parse the contents of the information subparameter for the event report to be fully understood."; } leaf information { type string; description "Additional information about the alarm."; } } // list additional-information leaf security-alarm-detector { type resource; description "This parameter identifies the detector of the security alarm."; } leaf service-user { type resource; description "This parameter identifies the service-user whose request for service led to the generation of the security alarm."; } leaf service-provider { type resource; description "This parameter identifies the intended service-provider of the service that led to the generation of the security alarm."; } } // list alarm action purge-alarms { description "This operation requests that the server delete entries from the alarm list according to the supplied criteria. Typically, this operation is used to delete alarms that are in closed operator state and older than a specified time. The number of purged alarms is returned as an output parameter."; input { leaf alarm-clearance-status { type enumeration { enum "any" { value 0; description "Ignore alarm-clearance status."; } enum "cleared" { value 1; description "Filter cleared alarms."; } enum "not-cleared" { value 2; description "Filter not-cleared alarms."; } } mandatory true; description "The clearance status of the alarm."; } container older-than { presence "Age specification"; description "Matches the 'last-status-change' leaf in the alarm."; choice age-spec { description "Filter using date and time age."; leaf seconds { type uint16; description "Age expressed in seconds."; } leaf minutes { type uint16; description "Age expressed in minutes."; } leaf hours { type uint16; description "Age expressed in hours."; } leaf days { type uint16; description "Age expressed in days."; } leaf weeks { type uint16; description "Age expressed in weeks."; } } // choice age-spec } // container older-than container severity { presence "Severity filter"; description "Filter based on severity."; choice sev-spec { description "Filter based on severity level."; leaf below { type severity; description "Severity less than this leaf."; } leaf is { type severity; description "Severity level equal to this leaf."; } leaf above { type severity; description "Severity level higher than this leaf."; } } // choice sev-spec } // container severity container operator-state-filter { if-feature operator-actions; presence "Operator state filter"; description "Filter based on operator state."; leaf state { type operator-state; description "Filter on operator state."; } leaf user { type string; description "Filter based on which operator."; } } // container operator-state-filter } output { leaf purged-alarms { type uint32; description "Number of purged alarms."; } } } // rpc purge-alarms action compress-alarms { if-feature alarm-history; description "This operation requests that the server compress entries in the alarm list by removing all but the latest 'status-change' entry for all matching alarms. Conditions in the input are logically ANDed. If no input condition is given, all alarms are compressed."; input { leaf resource { type resource-match; description "Compress the alarms matching this resource."; } leaf alarm-type-id { type leafref { path "/alarms/alarm-list/alarm/alarm-type-id"; require-instance false; } description "Compress alarms with this 'alarm-type-id'."; } leaf alarm-type-qualifier { type leafref { path "/alarms/alarm-list/alarm/alarm-type-qualifier"; require-instance false; } description "Compress the alarms with this 'alarm-type-qualifier'."; } } output { leaf compressed-alarms { type uint32; description "Number of compressed alarm entries."; } } } // rpc compress-alarms } // container alarm-list container shelved-alarms { if-feature alarm-shelving; config false; description "The shelved alarms. Alarms appear here if they match the criteria in /alarms/control/alarm-shelving. This list does not generate any notifications. The list represents alarms that are considered not relevant by the operator. Alarms in this list have an 'operator-state' of 'shelved'. This cannot be changed."; leaf number-of-shelved-alarms { type yang:gauge32; description "This object shows the total number of current alarms, i.e., the total number of entries in the alarm list."; } leaf shelved-alarms-last-changed { type yang:date-and-time; description "A timestamp when the shelved-alarm list was last changed. The value can be used by a manager to initiate an alarm resynchronization procedure."; } list shelved-alarm { key "resource alarm-type-id alarm-type-qualifier"; description "The list of shelved alarms. Shelved alarms can only be updated from the underlying resource; no operator actions are supported."; leaf resource { type resource; mandatory true; description "The alarming resource. See also 'alt-resource'. This could be, for example, a reference to the alarming interface"; } leaf alarm-type-id { type alarm-type-id; mandatory true; description "This leaf and the leaf 'alarm-type-qualifier' together provide a unique identification of the alarm type."; } leaf alarm-type-qualifier { type alarm-type-qualifier; description "This leaf is used when the 'alarm-type-id' leaf cannot uniquely identify the alarm type. Normally, this is not the case, and this leaf is the empty string."; } leaf-list alt-resource { type resource; description "Used if the alarming resource is available over other interfaces. This field can contain SNMP OIDs, CIM paths, or 3GPP distinguished names, for example."; } list related-alarm { if-feature alarm-correlation; key "resource alarm-type-id alarm-type-qualifier"; description "References to related alarms. Note that the related alarm might have been purged from the alarm list."; leaf resource { type leafref { path "/alarms/alarm-list/alarm/resource"; require-instance false; } description "The alarming resource for the related alarm."; } leaf alarm-type-id { type leafref { path "/alarms/alarm-list/alarm[resource=current()/../resource]/alarm-type-id"; require-instance false; } description "The alarm type identifier for the related alarm."; } leaf alarm-type-qualifier { type leafref { path "/alarms/alarm-list/alarm[resource=current()/../resource][alarm-type-id=current()/../alarm-type-id]/alarm-type-qualifier"; require-instance false; } description "The alarm qualifier for the related alarm."; } } // list related-alarm leaf-list impacted-resource { if-feature service-impact-analysis; type resource; description "Resources that might be affected by this alarm. If the system creates an alarm on a resource and also has a mapping to other resources that might be impacted, these resources can be listed in this leaf-list. In this way, the system can create one alarm instead of several. For example, if an interface has an alarm, the 'impacted-resource' can reference the aggregated port channels."; } leaf-list root-cause-resource { if-feature root-cause-analysis; type resource; description "Resources that are candidates for causing the alarm. If the system has a mechanism to understand the candidate root causes of an alarm, this leaf-list can be used to list the root-cause candidate resources. In this way, the system can create one alarm instead of several. An example might be a logging system (alarm resource) that fails; the alarm can reference the file system in the 'root-cause-resource' leaf-list. Note that the intended use is not to also send an alarm with the 'root-cause-resource' as an alarming resource. The 'root-cause-resource' leaf-list is a hint and should not also generate an alarm for the same problem."; } leaf shelf-name { type leafref { path "/alarms/control/alarm-shelving/shelf/name"; require-instance false; } description "The name of the shelf."; } leaf is-cleared { type boolean; mandatory true; description "Indicates the current clearance state of the alarm. An alarm might toggle from active alarm to cleared alarm and back to active again."; } leaf last-raised { type yang:date-and-time; mandatory true; description "An alarm may change severity level and toggle between active and cleared during its lifetime. This leaf indicates the last time it was raised ('is-cleared' = 'false')."; } leaf last-changed { type yang:date-and-time; mandatory true; description "A timestamp when the 'status-change' or 'operator-state-change' list was last changed."; } leaf perceived-severity { type severity; mandatory true; description "The last severity of the alarm. If an alarm was raised with severity 'warning' but later changed to 'major', this leaf will show 'major'."; } leaf alarm-text { type alarm-text; mandatory true; description "The last reported alarm text. This text should contain information for an operator to be able to understand the problem and how to resolve it."; } list status-change { if-feature alarm-history; key "time"; min-elements 1; description "A list of status-change events for this alarm. The entry with latest timestamp in this list MUST correspond to the leafs 'is-cleared', 'perceived-severity', and 'alarm-text' for the alarm. This list is ordered according to the timestamps of alarm state changes. The first item corresponds to the latest state change. The following state changes create an entry in this list: - changed severity (warning, minor, major, critical) - clearance status; this also updates the 'is-cleared' leaf - alarm-text update"; leaf time { type yang:date-and-time; mandatory true; description "The time the status of the alarm changed. The value represents the time the real alarm-state change appeared in the resource and not when it was added to the alarm list. The /alarm-list/alarm/last-changed MUST be set to the same value."; } leaf perceived-severity { type severity-with-clear; mandatory true; description "The severity of the alarm as defined by X.733. Note that this may not be the original severity since the alarm may have changed severity."; reference "ITU-T Recommendation X.733: Information Technology - Open Systems Interconnection - System Management: Alarm Reporting Function"; } leaf alarm-text { type alarm-text; mandatory true; description "A user-friendly text describing the alarm-state change."; reference "ITU-T Recommendation X.733: Information Technology - Open Systems Interconnection - System Management: Alarm Reporting Function"; } } // list status-change list operator-state-change { if-feature operator-actions; key "time"; description "This list is used by operators to indicate the state of human intervention on an alarm. For shelved alarms, the system has set the list item in the list to 'shelved'."; leaf time { type yang:date-and-time; mandatory true; description "Timestamp for operator action on the alarm."; } leaf operator { type string; mandatory true; description "The name of the operator that has acted on this alarm."; } leaf state { type operator-state; mandatory true; description "The operator's view of the alarm state."; } leaf text { type string; description "Additional optional textual information provided by the operator."; } } // list operator-state-change leaf event-type { type event-type; description "The X.733/X.736 event type for this alarm."; } leaf probable-cause { type uint32; description "The X.733 probable cause for this alarm."; } leaf probable-cause-string { type string; description "The user-friendly string matching the probable cause integer value. The string SHOULD match the X.733 enumeration. For example, value 27 is 'localNodeTransmissionError'."; } container threshold-information { description "This parameter shall be present when the alarm is a result of crossing a threshold. "; leaf triggered-threshold { type string; description "The identifier of the threshold attribute that caused the notification."; } leaf observed-value { type value-type; description "The value of the gauge or counter that crossed the threshold. This may be different from the threshold value if, for example, the gauge may only take on discrete values."; } choice threshold-level { description "In the case of a gauge, the threshold level specifies a pair of threshold values: the first is the value of the crossed threshold, and the second is its corresponding hysteresis; in the case of a counter, the threshold level specifies only the threshold value."; case up { leaf up-high { type value-type; description "The going-up threshold for raising the alarm."; } leaf up-low { type value-type; description "The going-down threshold for clearing the alarm. This is used for hysteresis functions for gauges."; } } // case up case down { leaf down-low { type value-type; description "The going-down threshold for raising the alarm."; } leaf down-high { type value-type; description "The going-up threshold for clearing the alarm. This is used for hysteresis functions for gauges."; } } // case down } // choice threshold-level leaf arm-time { type yang:date-and-time; description "For a gauge threshold, it's the time at which the threshold was last re-armed; namely, it's the time after the previous threshold crossing at which the hysteresis value of the threshold was exceeded, thus again permitting the generation of notifications when the threshold is crossed. For a counter threshold, it's the later of the time at which the threshold offset was last applied or the counter was last initialized (for resettable counters)."; } } // container threshold-information list monitored-attributes { key "id"; description "The Monitored attributes parameter, when present, defines one or more attributes of the resource and their corresponding values at the time of the alarm."; leaf id { type resource; description "The resource representing the attribute."; } leaf value { type string; description "The value represented as a string since it could be of any type."; } } // list monitored-attributes leaf-list proposed-repair-actions { type string; description "This parameter, when present, is used if the cause is known and the system being managed can suggest one or more solutions (such as switch in standby equipment, retry, and replace media)."; } leaf trend-indication { type trend; description "This parameter specifies the current severity trend of the resource. If present, it indicates that there are one or more alarms ('outstanding alarms') that have not been cleared and that pertain to the same resource as this alarm ('current alarm') does. The possible values are: more-severe: The Perceived severity in the current alarm is higher (more severe) than that reported in any of the outstanding alarms. no-change: The Perceived severity reported in the current alarm is the same as the highest (most severe) of any of the outstanding alarms. less-severe: There is at least one outstanding alarm of a severity higher (more severe) than that in the current alarm."; } leaf backedup-status { type boolean; description "This parameter, when present, specifies whether or not the object emitting the alarm has been backed up; therefore, it is possible to know whether or not services provided to the user have been disrupted when this parameter is included. The use of this field in conjunction with the 'perceived-severity' field provides information in an independent form to qualify the seriousness of the alarm and the ability of the system as a whole to continue to provide services. If the value of this parameter is true, it indicates that the object emitting the alarm has been backed up; if false, the object has not been backed up."; } leaf backup-object { type resource; description "This parameter SHALL be present when the 'backedup-status' parameter is present and has the value 'true'. This parameter specifies the managed object instance that is providing back-up services for the managed object to which the notification pertains. This parameter is useful, for example, when the back-up object is from a pool of objects, any of which may be dynamically allocated to replace a faulty object."; } list additional-information { key "identifier"; description "This parameter allows the inclusion of an additional information set in the alarm. It is a series of data structures, each of which contains three items of information: an identifier, a significance indicator, and the problem information."; leaf identifier { type string; description "Identifies the data type of the information parameter."; } leaf significant { type boolean; description "Set to 'true' if the receiving system must be able to parse the contents of the information subparameter for the event report to be fully understood."; } leaf information { type string; description "Additional information about the alarm."; } } // list additional-information leaf security-alarm-detector { type resource; description "This parameter identifies the detector of the security alarm."; } leaf service-user { type resource; description "This parameter identifies the service-user whose request for service led to the generation of the security alarm."; } leaf service-provider { type resource; description "This parameter identifies the intended service-provider of the service that led to the generation of the security alarm."; } } // list shelved-alarm action purge-shelved-alarms { description "This operation requests that the server delete entries from the shelved-alarm list according to the supplied criteria. In the shelved-alarm list, it makes sense to delete alarms that are not relevant anymore. The number of purged alarms is returned as an output parameter."; input { leaf alarm-clearance-status { type enumeration { enum "any" { value 0; description "Ignore alarm-clearance status."; } enum "cleared" { value 1; description "Filter cleared alarms."; } enum "not-cleared" { value 2; description "Filter not-cleared alarms."; } } mandatory true; description "The clearance status of the alarm."; } container older-than { presence "Age specification"; description "Matches the 'last-status-change' leaf in the alarm."; choice age-spec { description "Filter using date and time age."; leaf seconds { type uint16; description "Age expressed in seconds."; } leaf minutes { type uint16; description "Age expressed in minutes."; } leaf hours { type uint16; description "Age expressed in hours."; } leaf days { type uint16; description "Age expressed in days."; } leaf weeks { type uint16; description "Age expressed in weeks."; } } // choice age-spec } // container older-than container severity { presence "Severity filter"; description "Filter based on severity."; choice sev-spec { description "Filter based on severity level."; leaf below { type severity; description "Severity less than this leaf."; } leaf is { type severity; description "Severity level equal to this leaf."; } leaf above { type severity; description "Severity level higher than this leaf."; } } // choice sev-spec } // container severity container operator-state-filter { if-feature operator-actions; presence "Operator state filter"; description "Filter based on operator state."; leaf state { type operator-state; description "Filter on operator state."; } leaf user { type string; description "Filter based on which operator."; } } // container operator-state-filter } output { leaf purged-alarms { type uint32; description "Number of purged alarms."; } } } // rpc purge-shelved-alarms action compress-shelved-alarms { if-feature alarm-history; description "This operation requests that the server compress entries in the shelved-alarm list by removing all but the latest 'status-change' entry for all matching shelved alarms. Conditions in the input are logically ANDed. If no input condition is given, all alarms are compressed."; input { leaf resource { type leafref { path "/alarms/shelved-alarms/shelved-alarm/resource"; require-instance false; } description "Compress the alarms with this resource."; } leaf alarm-type-id { type leafref { path "/alarms/shelved-alarms/shelved-alarm/alarm-type-id"; require-instance false; } description "Compress alarms with this 'alarm-type-id'."; } leaf alarm-type-qualifier { type leafref { path "/alarms/shelved-alarms/shelved-alarm/alarm-type-qualifier"; require-instance false; } description "Compress the alarms with this 'alarm-type-qualifier'."; } } output { leaf compressed-alarms { type uint32; description "Number of compressed alarm entries."; } } } // rpc compress-shelved-alarms } // container shelved-alarms list alarm-profile { if-feature alarm-profile; key "alarm-type-id alarm-type-qualifier-match resource"; ordered-by user; description "This list is used to assign further information or configuration for each alarm type. This module supports a mechanism where the client can override the system-default alarm severity levels. The 'alarm-profile' is also a useful augmentation point for specific additions to alarm types."; leaf alarm-type-id { type alarm-type-id; description "The alarm type identifier to match."; } leaf alarm-type-qualifier-match { type string; description "An XML Schema regular expression that is used to match the alarm type qualifier."; reference "XML Schema Part 2: Datatypes Second Edition, World Wide Web Consortium Recommendation REC-xmlschema-2-20041028"; } leaf resource { type resource-match; description "Specifies which resources to match."; } leaf description { type string; mandatory true; description "A description of the alarm profile."; } container alarm-severity-assignment-profile { if-feature severity-assignment; description "The client can override the system-default severity level."; reference "ITU-T Recommendation M.3100: Generic network information model ITU-T Recommendation M.3160: Generic, protocol-neutral management information model"; leaf-list severity-level { type severity; ordered-by user; description "Specifies the configured severity level(s) for the matching alarm. If the alarm has several severity levels, the leaf-list shall be given in rising severity order. The original M3100/M3160 ASAP function only allows for a one-to-one mapping between alarm type and severity, but since YANG module supports stateful alarms, the mapping must allow for several severity levels. Assume a high-utilization alarm type with two thresholds with the system-default severity levels of threshold1 = warning and threshold2 = minor. Setting this leaf-list to (minor, major) will assign the severity levels as threshold1 = minor and threshold2 = major"; } } // container alarm-severity-assignment-profile } // list alarm-profile } // container alarms notification alarm-notification { description "This notification is used to report a state change for an alarm. The same notification is used for reporting a newly raised alarm, a cleared alarm, or changing the text and/or severity of an existing alarm."; leaf resource { type resource; mandatory true; description "The alarming resource. See also 'alt-resource'. This could be, for example, a reference to the alarming interface"; } leaf alarm-type-id { type alarm-type-id; mandatory true; description "This leaf and the leaf 'alarm-type-qualifier' together provide a unique identification of the alarm type."; } leaf alarm-type-qualifier { type alarm-type-qualifier; description "This leaf is used when the 'alarm-type-id' leaf cannot uniquely identify the alarm type. Normally, this is not the case, and this leaf is the empty string."; } leaf-list alt-resource { type resource; description "Used if the alarming resource is available over other interfaces. This field can contain SNMP OIDs, CIM paths, or 3GPP distinguished names, for example."; } list related-alarm { if-feature alarm-correlation; key "resource alarm-type-id alarm-type-qualifier"; description "References to related alarms. Note that the related alarm might have been purged from the alarm list."; leaf resource { type leafref { path "/alarms/alarm-list/alarm/resource"; require-instance false; } description "The alarming resource for the related alarm."; } leaf alarm-type-id { type leafref { path "/alarms/alarm-list/alarm[resource=current()/../resource]/alarm-type-id"; require-instance false; } description "The alarm type identifier for the related alarm."; } leaf alarm-type-qualifier { type leafref { path "/alarms/alarm-list/alarm[resource=current()/../resource][alarm-type-id=current()/../alarm-type-id]/alarm-type-qualifier"; require-instance false; } description "The alarm qualifier for the related alarm."; } } // list related-alarm leaf-list impacted-resource { if-feature service-impact-analysis; type resource; description "Resources that might be affected by this alarm. If the system creates an alarm on a resource and also has a mapping to other resources that might be impacted, these resources can be listed in this leaf-list. In this way, the system can create one alarm instead of several. For example, if an interface has an alarm, the 'impacted-resource' can reference the aggregated port channels."; } leaf-list root-cause-resource { if-feature root-cause-analysis; type resource; description "Resources that are candidates for causing the alarm. If the system has a mechanism to understand the candidate root causes of an alarm, this leaf-list can be used to list the root-cause candidate resources. In this way, the system can create one alarm instead of several. An example might be a logging system (alarm resource) that fails; the alarm can reference the file system in the 'root-cause-resource' leaf-list. Note that the intended use is not to also send an alarm with the 'root-cause-resource' as an alarming resource. The 'root-cause-resource' leaf-list is a hint and should not also generate an alarm for the same problem."; } leaf time { type yang:date-and-time; mandatory true; description "The time the status of the alarm changed. The value represents the time the real alarm-state change appeared in the resource and not when it was added to the alarm list. The /alarm-list/alarm/last-changed MUST be set to the same value."; } leaf perceived-severity { type severity-with-clear; mandatory true; description "The severity of the alarm as defined by X.733. Note that this may not be the original severity since the alarm may have changed severity."; reference "ITU-T Recommendation X.733: Information Technology - Open Systems Interconnection - System Management: Alarm Reporting Function"; } leaf alarm-text { type alarm-text; mandatory true; description "A user-friendly text describing the alarm-state change."; reference "ITU-T Recommendation X.733: Information Technology - Open Systems Interconnection - System Management: Alarm Reporting Function"; } leaf event-type { type event-type; description "The X.733/X.736 event type for this alarm."; } leaf probable-cause { type uint32; description "The X.733 probable cause for this alarm."; } leaf probable-cause-string { type string; description "The user-friendly string matching the probable cause integer value. The string SHOULD match the X.733 enumeration. For example, value 27 is 'localNodeTransmissionError'."; } container threshold-information { description "This parameter shall be present when the alarm is a result of crossing a threshold. "; leaf triggered-threshold { type string; description "The identifier of the threshold attribute that caused the notification."; } leaf observed-value { type value-type; description "The value of the gauge or counter that crossed the threshold. This may be different from the threshold value if, for example, the gauge may only take on discrete values."; } choice threshold-level { description "In the case of a gauge, the threshold level specifies a pair of threshold values: the first is the value of the crossed threshold, and the second is its corresponding hysteresis; in the case of a counter, the threshold level specifies only the threshold value."; case up { leaf up-high { type value-type; description "The going-up threshold for raising the alarm."; } leaf up-low { type value-type; description "The going-down threshold for clearing the alarm. This is used for hysteresis functions for gauges."; } } // case up case down { leaf down-low { type value-type; description "The going-down threshold for raising the alarm."; } leaf down-high { type value-type; description "The going-up threshold for clearing the alarm. This is used for hysteresis functions for gauges."; } } // case down } // choice threshold-level leaf arm-time { type yang:date-and-time; description "For a gauge threshold, it's the time at which the threshold was last re-armed; namely, it's the time after the previous threshold crossing at which the hysteresis value of the threshold was exceeded, thus again permitting the generation of notifications when the threshold is crossed. For a counter threshold, it's the later of the time at which the threshold offset was last applied or the counter was last initialized (for resettable counters)."; } } // container threshold-information list monitored-attributes { key "id"; description "The Monitored attributes parameter, when present, defines one or more attributes of the resource and their corresponding values at the time of the alarm."; leaf id { type resource; description "The resource representing the attribute."; } leaf value { type string; description "The value represented as a string since it could be of any type."; } } // list monitored-attributes leaf-list proposed-repair-actions { type string; description "This parameter, when present, is used if the cause is known and the system being managed can suggest one or more solutions (such as switch in standby equipment, retry, and replace media)."; } leaf trend-indication { type trend; description "This parameter specifies the current severity trend of the resource. If present, it indicates that there are one or more alarms ('outstanding alarms') that have not been cleared and that pertain to the same resource as this alarm ('current alarm') does. The possible values are: more-severe: The Perceived severity in the current alarm is higher (more severe) than that reported in any of the outstanding alarms. no-change: The Perceived severity reported in the current alarm is the same as the highest (most severe) of any of the outstanding alarms. less-severe: There is at least one outstanding alarm of a severity higher (more severe) than that in the current alarm."; } leaf backedup-status { type boolean; description "This parameter, when present, specifies whether or not the object emitting the alarm has been backed up; therefore, it is possible to know whether or not services provided to the user have been disrupted when this parameter is included. The use of this field in conjunction with the 'perceived-severity' field provides information in an independent form to qualify the seriousness of the alarm and the ability of the system as a whole to continue to provide services. If the value of this parameter is true, it indicates that the object emitting the alarm has been backed up; if false, the object has not been backed up."; } leaf backup-object { type resource; description "This parameter SHALL be present when the 'backedup-status' parameter is present and has the value 'true'. This parameter specifies the managed object instance that is providing back-up services for the managed object to which the notification pertains. This parameter is useful, for example, when the back-up object is from a pool of objects, any of which may be dynamically allocated to replace a faulty object."; } list additional-information { key "identifier"; description "This parameter allows the inclusion of an additional information set in the alarm. It is a series of data structures, each of which contains three items of information: an identifier, a significance indicator, and the problem information."; leaf identifier { type string; description "Identifies the data type of the information parameter."; } leaf significant { type boolean; description "Set to 'true' if the receiving system must be able to parse the contents of the information subparameter for the event report to be fully understood."; } leaf information { type string; description "Additional information about the alarm."; } } // list additional-information leaf security-alarm-detector { type resource; description "This parameter identifies the detector of the security alarm."; } leaf service-user { type resource; description "This parameter identifies the service-user whose request for service led to the generation of the security alarm."; } leaf service-provider { type resource; description "This parameter identifies the intended service-provider of the service that led to the generation of the security alarm."; } } // notification alarm-notification notification alarm-inventory-changed { description "This notification is used to report that the list of possible alarms has changed. This can happen when, for example, a new software module is installed or a new physical card is inserted."; } // notification alarm-inventory-changed } // module ietf-alarms
© 2023 YumaWorks, Inc. All rights reserved.