module ietf-ipsec-common {
yang-version 1.1;
namespace
"urn:ietf:params:xml:ns:yang:ietf-ipsec-common";
prefix ipsec-common;
import ietf-inet-types {
prefix inet;
}
import ietf-yang-types {
prefix yang;
}
organization "IETF I2NSF Working Group";
contact
"WG Web: <https://datatracker.ietf.org/wg/i2nsf/about/>
WG List: <mailto:i2nsf@ietf.org>
Author: Rafael Marin-Lopez
<mailto:rafa@um.es>
Author: Gabriel Lopez-Millan
<mailto:gabilm@um.es>
Author: Fernando Pereniguez-Garcia
<mailto:fernando.pereniguez@cud.upct.es>
";
description
"Common Data model for the IKE and IKE-less cases
defined by the SDN-based IPsec flow protection service.
Copyright (c) 2019 IETF Trust and the persons
identified as authors of the code. All rights reserved.
Redistribution and use in source and binary forms, with
or without modification, is permitted pursuant to, and
subject to the license terms contained in, the
Simplified BSD License set forth in Section 4.c of the
IETF Trust's Legal Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info).
This version of this YANG module is part of RFC XXXX;;
see the RFC itself for full legal notices.
The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL',
'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED',
'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this
document are to be interpreted as described in BCP 14
(RFC 2119) (RFC 8174) when, and only when, they appear
in all capitals, as shown here.";
revision "2019-08-05" {
description "Revision 06";
reference
"RFC XXXX: YANG Groupings and typedef
for IKE and IKE-less case";
}
typedef encryption-algorithm-type {
type uint16;
description
"The encryption algorithm is specified with a 16-bit
number extracted from IANA Registry. The acceptable
values MUST follow the requirement levels for
encryption algorithms for ESP and IKEv2.";
reference
"IANA Registry- Transform Type 1 - Encryption
Algorithm Transform IDs. RFC 8221 - Cryptographic
Algorithm Implementation Requirements and Usage
Guidance for Encapsulating Security Payload (ESP)
and Authentication Header (AH) and RFC 8247 -
Algorithm Implementation Requirements and Usage
Guidance for the Internet Key Exchange Protocol
Version 2 (IKEv2).";
}
typedef integrity-algorithm-type {
type uint16;
description
"The integrity algorithm is specified with a 16-bit
number extracted from IANA Registry.
The acceptable values MUST follow the requirement
levels for encryption algorithms for ESP and IKEv2.";
reference
"IANA Registry- Transform Type 3 - Integrity
Algorithm Transform IDs. RFC 8221 - Cryptographic
Algorithm Implementation Requirements and Usage
Guidance for Encapsulating Security Payload (ESP)
and Authentication Header (AH) and RFC 8247 -
Algorithm Implementation Requirements and Usage
Guidance for the Internet Key Exchange Protocol
Version 2 (IKEv2).";
}
typedef ipsec-mode {
type enumeration {
enum "transport" {
value 0;
description
"IPsec transport mode. No Network Address
Translation (NAT) support.";
}
enum "tunnel" {
value 1;
description "IPsec tunnel mode.";
}
}
description
"Type definition of IPsec mode: transport or
tunnel.";
reference
"Section 3.2 in RFC 4301.";
}
typedef esp-encap {
type enumeration {
enum "espintcp" {
value 0;
description
"ESP in TCP encapsulation.";
reference
"RFC 8229 - TCP Encapsulation of IKE and
IPsec Packets.";
}
enum "espintls" {
value 1;
description
"ESP in TCP encapsulation using TLS.";
reference
"RFC 8229 - TCP Encapsulation of IKE and
IPsec Packets.";
}
enum "espinudp" {
value 2;
description
"ESP in UDP encapsulation.";
reference
"RFC 3948 - UDP Encapsulation of IPsec ESP
Packets.";
}
enum "none" {
value 3;
description
"NOT ESP encapsulation.";
}
}
description
"Types of ESP encapsulation when Network Address
Translation (NAT) is present between two NSFs.";
reference
"RFC 8229 - TCP Encapsulation of IKE and IPsec
Packets and RFC 3948 - UDP Encapsulation of IPsec
ESP Packets.";
}
typedef ipsec-protocol-parameters {
type enumeration {
enum "esp" {
value 0;
description "IPsec ESP protocol.";
}
}
description
"Only the Encapsulation Security Protocol (ESP) is
supported but it could be extended in the future.";
reference
"RFC 4303- IP Encapsulating Security Payload
(ESP).";
}
typedef lifetime-action {
type enumeration {
enum "terminate-clear" {
value 0;
description
"Terminates the IPsec SA and allows the
packets through.";
}
enum "terminate-hold" {
value 1;
description
"Terminates the IPsec SA and drops the
packets.";
}
enum "replace" {
value 2;
description
"Replaces the IPsec SA with a new one:
rekey. ";
}
}
description
"When the lifetime of an IPsec SA expires an action
needs to be performed over the IPsec SA that
reached the lifetime. There are three posible
options: terminate-clear, terminate-hold and
replace.";
reference
"Section 4.5 in RFC 4301.";
}
typedef ipsec-traffic-direction {
type enumeration {
enum "inbound" {
value 0;
description "Inbound traffic.";
}
enum "outbound" {
value 1;
description "Outbound traffic.";
}
}
description
"IPsec traffic direction is defined in two
directions: inbound and outbound. From a NSF
perspective inbound means the traffic that enters
the NSF and outbound is the traffic that is sent
from the NSF.";
reference
"Section 5 in RFC 4301.";
}
typedef ipsec-spd-action {
type enumeration {
enum "protect" {
value 0;
description
"PROTECT the traffic with IPsec.";
}
enum "bypass" {
value 1;
description
"BYPASS the traffic. The packet is forwarded
without IPsec protection.";
}
enum "discard" {
value 2;
description
"DISCARD the traffic. The IP packet is
discarded.";
}
}
description
"The action when traffic matches an IPsec security
policy. According to RFC 4301 there are three
possible values: BYPASS, PROTECT AND DISCARD";
reference
"Section 4.4.1 in RFC 4301.";
}
typedef ipsec-inner-protocol {
type union {
type uint8;
type enumeration {
enum "any" {
value 256;
description
"Any IP protocol number value.";
}
}
}
default 'any';
description
"IPsec protection can be applied to specific IP
traffic and layer 4 traffic (TCP, UDP, SCTP, etc.)
or ANY protocol in the IP packet payload. We
specify the IP protocol number with an uint8 or
ANY defining an enumerate with value 256 to
indicate the protocol number.";
reference
"Section 4.4.1.1 in RFC 4301.
IANA Registry - Protocol Numbers.";
}
grouping encap {
description
"This group of nodes allows to define the type of
encapsulation in case NAT traversal is
required and port information.";
reference
"RFC 3947 and RFC 8229.";
leaf espencap {
type esp-encap;
description
"ESP in TCP, ESP in UDP or ESP in TLS.";
}
leaf sport {
type inet:port-number;
default '4500';
description
"Encapsulation source port.";
}
leaf dport {
type inet:port-number;
default '4500';
description
"Encapsulation destination port.";
}
leaf-list oaddr {
type inet:ip-address;
description
"If required, this is the original address that
was used before NAT was applied over the Packet.
";
}
} // grouping encap
grouping lifetime {
description
"Different lifetime values limited to an IPsec SA.";
reference
"Section 4.4.2.1 in RFC 4301.";
leaf time {
type uint32;
default '0';
description
"Time in seconds since the IPsec SA was added.
For example, if this value is 180 seconds it
means the IPsec SA expires in 180 seconds since
it was added. The value 0 implies infinite.";
}
leaf bytes {
type uint32;
default '0';
description
"If the IPsec SA processes the number of bytes
expressed in this leaf, the IPsec SA expires and
should be rekeyed. The value 0 implies
infinite.";
}
leaf packets {
type uint32;
default '0';
description
"If the IPsec SA processes the number of packets
expressed in this leaf, the IPsec SA expires and
should be rekeyed. The value 0 implies
infinite.";
}
leaf idle {
type uint32;
default '0';
description
"When a NSF stores an IPsec SA, it
consumes system resources. In an idle NSF this
is a waste of resources. If the IPsec SA is idle
during this number of seconds the IPsec SA
should be removed. The value 0 implies
infinite.";
}
} // grouping lifetime
grouping port-range {
description
"This grouping defines a port range, such as
expressed in RFC 4301. For example: 1500 (Start
Port Number)-1600 (End Port Number). A port range
is used in the Traffic Selector.";
reference
"Section 4.4.1.2 in RFC 4301.";
leaf start {
type inet:port-number;
description "Start port number.";
}
leaf end {
type inet:port-number;
description "End port number.";
}
} // grouping port-range
grouping tunnel-grouping {
description
"The parameters required to define the IP tunnel
endpoints when IPsec SA requires tunnel mode. The
tunnel is defined by two endpoints: the local IP
address and the remote IP address.";
leaf local {
type inet:ip-address;
mandatory true;
description
"Local IP address' tunnel endpoint.";
}
leaf remote {
type inet:ip-address;
mandatory true;
description
"Remote IP address' tunnel endpoint.";
}
leaf df-bit {
type enumeration {
enum "clear" {
value 0;
description
"Disable the DF (Don't Fragment) bit
from the outer header. This is the
default value.";
}
enum "set" {
value 1;
description
"Enable the DF bit in the outer header.";
}
enum "copy" {
value 2;
description
"Copy the DF bit to the outer header.";
}
}
default 'clear';
description
"Allow configuring the DF bit when encapsulating
tunnel mode IPsec traffic. RFC 4301 describes
three options to handle the DF bit during
tunnel encapsulation: clear, set and copy from
the inner IP header.";
reference
"Section 8.1 in RFC 4301.";
}
leaf bypass-dscp {
type boolean;
default 'true';
description
"If DSCP (Differentiated Services Code Point)
values in the inner header have to be used to
select one IPsec SA among several that match
the traffic selectors for an outbound packet";
reference
"Section 4.4.2.1. in RFC 4301.";
}
leaf dscp-mapping {
type yang:hex-string;
description
"DSCP values allowed for packets carried over
this IPsec SA.";
reference
"Section 4.4.2.1. in RFC 4301.";
}
leaf ecn {
type boolean;
default 'false';
description
"Explicit Congestion Notification (ECN). If true
copy CE bits to inner header.";
reference
"Section 5.1.2 and Annex C in RFC 4301.";
}
} // grouping tunnel-grouping
grouping selector-grouping {
description
"This grouping contains the definition of a Traffic
Selector, which is used in the IPsec policies and
IPsec SAs.";
reference
"Section 4.4.1.2 in RFC 4301.";
leaf local-subnet {
type inet:ip-prefix;
mandatory true;
description
"Local IP address subnet.";
}
leaf remote-subnet {
type inet:ip-prefix;
mandatory true;
description
"Remote IP address subnet.";
}
leaf inner-protocol {
type ipsec-inner-protocol;
default 'any';
description
"Inner Protocol that is going to be
protected with IPsec.";
}
list local-ports {
key "start end";
description
"List of local ports. When the inner
protocol is ICMP this 16 bit value represents
code and type.";
uses port-range;
} // list local-ports
list remote-ports {
key "start end";
description
"List of remote ports. When the upper layer
protocol is ICMP this 16 bit value represents
code and type.";
uses port-range;
} // list remote-ports
} // grouping selector-grouping
grouping ipsec-policy-grouping {
description
"Holds configuration information for an IPsec SPD
entry.";
leaf anti-replay-window {
type uint64;
default '32';
description
"A 64-bit counter used to determine whether an
inbound ESP packet is a replay.";
reference
"Section 4.4.2.1 in RFC 4301.";
}
container traffic-selector {
description
"Packets are selected for
processing actions based on the IP and inner
protocol header information, selectors,
matched against entries in the SPD.";
reference
"Section 4.4.4.1 in RFC 4301.";
uses selector-grouping;
} // container traffic-selector
container processing-info {
description
"SPD processing. If the required processing
action is protect, it contains the required
information to process the packet.";
reference
"Section 4.4.1.2 in RFC 4301.";
leaf action {
type ipsec-spd-action;
default 'discard';
description
"If bypass or discard, container
ipsec-sa-cfg is empty.";
}
container ipsec-sa-cfg {
when "../action = 'protect'";
description
"IPsec SA configuration included in the SPD
entry.";
leaf pfp-flag {
type boolean;
default 'false';
description
"Each selector has a Populate From
Packet (PFP) flag. If asserted for a
given selector X, the flag indicates
that the IPsec SA to be created should
take its value (local IP address,
remote IP address, Next Layer
Protocol, etc.) for X from the value
in the packet. Otherwise, the IPsec SA
should take its value(s) for X from
the value(s) in the SPD entry.";
}
leaf ext-seq-num {
type boolean;
default 'false';
description
"True if this IPsec SA is using extended
sequence numbers. True 64 bit counter,
False 32 bit.";
}
leaf seq-overflow {
type boolean;
default 'false';
description
"The flag indicating whether
overflow of the sequence number
counter should prevent transmission
of additional packets on the IPsec
SA (false) and, therefore needs to
be rekeyed, or whether rollover is
permitted (true). If Authenticated
Encryption with Associated Data
(AEAD) is used this flag MUST be
false.";
}
leaf stateful-frag-check {
type boolean;
default 'false';
description
"Indicates whether (true) or not (false)
stateful fragment checking applies to
the IPsec SA to be created.";
}
leaf mode {
type ipsec-mode;
default 'transport';
description
"IPsec SA has to be processed in
transport or tunnel mode.";
}
leaf protocol-parameters {
type ipsec-protocol-parameters;
default 'esp';
description
"Security protocol of the IPsec SA:
Only ESP is supported but it could be
extended in the future.";
}
container esp-algorithms {
when
"../protocol-parameters = 'esp'";
description
"Configuration of Encapsulating
Security Payload (ESP) parameters and
algorithms.";
reference
"RFC 4303.";
leaf-list integrity {
type integrity-algorithm-type;
default "0";
ordered-by user;
description
"Configuration of ESP authentication
based on the specified integrity
algorithm. With AEAD algorithms,
the integrity node is not
used.";
reference
"Section 3.2 in RFC 4303.";
}
leaf-list encryption {
type encryption-algorithm-type;
default "20";
ordered-by user;
description
"Configuration of ESP encryption
algorithms. The default value is
20 (ENCR_AES_GCM_16).";
reference
"Section 3.2 in RFC 4303.";
}
leaf tfc-pad {
type boolean;
default 'false';
description
"If Traffic Flow Confidentiality
(TFC) padding for ESP encryption
can be used (true) or not (false)";
reference
"Section 2.7 in RFC 4303.";
}
} // container esp-algorithms
container tunnel {
when "../mode = 'tunnel'";
description
"IPsec tunnel endpoints definition.";
uses tunnel-grouping;
} // container tunnel
} // container ipsec-sa-cfg
} // container processing-info
container spd-mark {
description
"The Mark to set for the IPsec SA of this
connection. This option is only available
on linux NETKEY/XFRM kernels. It can be
used with iptables to create custom
iptables rules using CONNMARK. It can also
be used with Virtual Tunnel Interfaces
(VTI) to direct marked traffic to
specific vtiXX devices.";
leaf mark {
type uint32;
default '0';
description
"Mark used to match XFRM policies and
states.";
}
leaf mask {
type yang:hex-string;
default '00:00:00:00';
description
"Mask used to match XFRM policies and
states.";
}
} // container spd-mark
} // grouping ipsec-policy-grouping
} // module ietf-ipsec-common